
Generation of Synthetic Datasets
in the Context of Computer
Networks using Generative
Adversarial Networks
Thiago Caproni Tavares (IFSULDEMINAS)
Ariel Góes de Castro (UNICAMP)
Leandro C. de Almeida (IFPB)
Washington Rodrigo Dias da Silva (UFSCar)
Christian Esteve Rothenberg (UNICAMP)
Fábio Luciano Verdi (UFSCar)

1

Support

3

2

1. Introduction
2. Fundamentals of Generative Adversarial Networks
3. In-band Network Telemetry and Programmable Data Planes
4. Generation of Telemetry Data
a. Hands on

5. Generation of Synthetic Network Trace
a. Hands on

6. Conclusions and future perspectives

Summary

3

Introduction

4

Motivation

Why are datasets important for computer networks?
To understand applications with different demands (e.g., latency, throughput) and
propose solutions (e.g, protocols)

What are the real/existing dataset limitations?
Little data available and privacy of companies and users is affected

Why use synthetic data in computer networks?
Existing datasets may be scarce or outdated - i.e., do not reflect existing applications’
needs (e.g., TSN, 5G and beyond, video streaming)

Introduction

5

● Generate synthetic data for machine learning model inputs

● Allocation for prediction or classification tasks

● Application in network simulations to maintain data privacy and
enhance data quality

Practical Applications of GANs
Introduction

6

Introduction to Generative Artificial
Intelligence

Generative Artificial Intelligence: An Overview

● Encompasses algorithms and models capable of generating diverse data forms, including images, videos,
text, and digital media.

● Has gained significant traction outside academic circles, largely due to advancements like ChatGPT, a
Large Language Model (LLM).

Generative Adversarial Networks (GANs)

● Introduced primarily for image synthesis.
● Comprises two neural networks: the generator and the discriminator.
● Operates on game theory principles: the generator creates synthetic data, while the discriminator judges

its authenticity.

Applications in Computer Networks

● Extension of GAN applications in computer networks, focusing on data synthesis and privacy.
● Utilization includes dataset augmentation, balancing, and simulation of complex data distributions.

Introduction

7

So... can we generate synthetic network data?

Spoiler: yes

8

Fundamentals of Generative
Adversarial Networks

9

● Definition: Machine learning framework consisting of two
competing modules: the generator and the discriminator.

● Function: The generator creates synthetic data mimicking real
data, while the discriminator learns to differentiate between the
two.

● Training Dynamics: Both modules are trained adversarially until
the discriminator cannot distinguish real from synthetic data.

● Complexity: The discriminator can be seen as employing
supervised learning by using real data to train its judgment
capabilities.

Generative Adversarial Networks (GANs)
Fundamentals of Generative Adversarial Networks

10

Generative Adversarial Networks (GANs)

We summarize the GAN training as
follows:
1. First, we feed the generator with (i)

noise and a (ii) training sample

Fundamentals of GANs

11

We summarize the GAN training as
follows:
1. First, we feed the generator with (i)

noise and a (ii) training sample
2. We merge it and generate a new

sample

Fundamentals of GANs
Generative Adversarial Networks (GANs)

12

We summarize the GAN training as
follows:
1. First, we feed the generator with (i)

noise and a (ii) training sample
2. We merge it and generate a new

sample
3. The Discriminator tries to guess

which of the entries is the real one

Fundamentals of GANs
Generative Adversarial Networks (GANs)

13

We summarize the GAN training as
follows:
1. First, we feed the generator with (i)

noise and a (ii) training sample
2. We merge it and generate a new

sample
3. The Discriminator tries to guess

which of the entries is the real one
4. The prediction is generally in the

probability interval [0,1] (e.g., sigmoid
function)

Fundamentals of GANs
Generative Adversarial Networks (GANs)

14

We summarize the GAN training as
follows:
1. First, we feed the generator with (i)

noise and a (ii) training sample
2. We merge it and generate a new

sample
3. The Discriminator tries to guess

which of the entries is the real one
4. The prediction is generally in the

probability interval [0,1] (e.g., sigmoid
function)

5. The generator is rewarded if it
“fools” the discriminator

Fundamentals of GANs
Generative Adversarial Networks (GANs)

15

We summarize the GAN training as
follows:
1. First, we feed the generator with (i)

noise and a (ii) training sample
2. We merge it and generate a new

sample
3. The Discriminator tries to guess

which of the entries is the real one
4. The prediction is generally in the

probability interval [0,1] (e.g., sigmoid
function)

5. The generator is rewarded if it
“fools” the discriminator

6. The discriminator function loss is
calculated (e.g., using Binary Cross
Entropy (BCE))

Fundamentals of GANs
Generative Adversarial Networks (GANs)

16

We summarize the GAN training as
follows:
7. During this process, we adjust the
learned distribution to the training
distribution

Fundamentals of GANs

time

Generative Adversarial Networks (GANs)

17

● Each scenario may require a different configuration of
network hyperparameters:
○ # of neurons, optimization algorithm (e.g., Adam, SGD), Loss Function (e.g., MSE,

Binary Cross-Entropy)

Challenges and limitations of GANs
Fundamentals of GANs

18

● Each scenario may require a different configuration of
network hyperparameters:
○ # of neurons, optimization algorithm (e.g., Adam, SGD), Loss Function (e.g., MSE,

Binary Cross-Entropy)

● Which of the existing GAN models (e.g., StyleGANs, Diffusion
GANs, TimeGANs) is more suitable for our scenario - i.e.,
packet/telemetry generation?
○ There is not a single “silver bullet” solution

Challenges and limitations of GANs
Fundamentals of GANs

19

● Each scenario may require a different configuration of
network hyperparameters:
○ # of neurons, optimization algorithm (e.g., Adam, SGD), Loss Function (e.g., MSE,

Binary Cross-Entropy)

● Which of the existing GAN models (e.g., StyleGANs, Diffusion
GANs, TimeGANs) is more suitable for our scenario - i.e.,
packet/telemetry generation?
○ There is not a single “silver bullet” solution

● How about the timing requirements?
○ Inter- (e.g., three-way-handshake) and intra-packet (e.g., type of service in TCP

headers)

Challenges and limitations of GANs
Fundamentals of GANs

20

Joint Applications of GANs and RL
● Potential Benefits: Combining GANs' ability to generate realistic data with RL's

optimization capabilities offers significant potential for enhancing network
configurations and policies.

● Sim-to-Real Discrepancy: Addressing differences between simulated and real
network data is crucial for practical applications.

Case Studies and Research
● Automated Network Slicing: Use of GANs for generating synthetic data to train

RL models, improving the efficiency of network slicing and reducing
simulation-to-real discrepancies.

● Resource Management in Network: Integrating deep RL with distributional
modeling using GANs to manage resources efficiently.

● Estimating Channel Coefficients: Leveraging synthetic data generated by GANs
to train RL algorithms for more accurate channel coefficient estimations.

GANs with RL in Network Applications
Fundamentals of GANs

21

Agent-Environment Interaction in MDP
(Markov decision process)

1. Time Step Initiation: At each specific time 𝑡.
2. Action Taken: The agent takes an action 𝐴.
3. State Observation: The agent observes the

subsequent state 𝑆𝑡+1 resulting from its
action.

4. Reward Assessment: A reward value 𝑅𝑡+1 is
generated for each interaction, assessing
the effectiveness of the action.

Objective: The process aims to maximize the
reward value throughout the agent's training
process, guiding the agent toward optimal
decision-making.

Fundamentals of GANs
GANs with RL in Network Applications

22

In-band Network Telemetry
and Programmable Data Plane

23

In-band Network Telemetry and
Programmable Data Plane

● The data plane programmability facilitates
the incorporation of intelligence during
packet processing at the hardware's most
proximate level, without the necessity for
control plane intervention.

● Packets incorporate telemetry instructions
within their header fields, facilitating the
fine-grained collection and recording of
network data.

● At each network hop along these paths, the
data plane of the network devices employs
telemetry instructions to facilitate the
collection and inclusion of metadata within
the packets as they traverse each node.

24

Generation of Telemetry Data

25

Infrastructure Overview
● Setup Components: Virtual machines interconnected via a P4 programmable data plane

network.
● Application Deployment: CDN supporting MPEG-DASH for live streaming a soccer game.
● Load Management: WAVE, is versatile load generator used for orchestrating application

instances over time.
● Network Architecture: Includes three programmable switches collecting INT telemetry data,

complemented by a Video Client for metrics.

Generation of Telemetry Data
Problem definition

26

Role of RL Agent
● Primary Function: Operates as a data plane optimizer, managing

queue sizes in switches to enhance user experience.
● Goal: Optimize resource utilization to improve network

infrastructure efficiency.

Generation of Telemetry Data
Problem definition

27

Data Plane Optimization
● Challenges: Gaining cooperation from network operators for

experiments can be difficult.
● Alternative Approach: Use a GAN trained on real data as a

simulator to train the RL agent without needing a real setup.

Generation of Telemetry Data
Problem definition

28

Generation of Telemetry Data
Methodology

29

Training the RL Model
● Real Setup: RL agent trained using real data collected from the

network.
● Synthetic Scenario: Offline training of the RL model using

synthetic data from the TimeGAN to assess generalization
capacity.

Importance of GAN in RL Training
● Dataset Issues: Original datasets may have imbalances,

inadequacies, or erroneous values.
● GAN Advantages: Provides the ability to generate balanced,

comprehensive data for diverse experimental scenarios.
● Efficiency Comparison: Evaluates the time efficiency of RL model

training using synthetic versus real data.

Methodology
Generation of Telemetry Data

30

Dataset Characterization
Generation of Telemetry Data

Dataset Composition
● Video Metrics: Frames per second (FPS), bitrate, buffer size.
● Network Metrics: Queue depth at packet queuing (Enq Qdepth),

packet queuing duration in microseconds (Deq Timedelta), and
queue depth at packet dequeuing (Deq Qdepth).

Experiments and Data Collection
● Buffer Size Configurations: Two experiments with switch buffer

sizes set at 32 and 64 packets.
● Data Merging and Filtering: Datasets merged based on

timestamps, filtering out higher `Deq Timedelta' to focus on
high-load conditions.

31

Dataset Characterization
Generation of Telemetry Data

Challenge of Non-Stationary Data
● Non-Stationarity: features

within the Programmable Data
Plane application exhibit
non-stationary characteristics.

● Visualization: Non-stationarity
visually demonstrated in the
figure alongside.

● Implication: This nature
complicates direct comparison
between real telemetry data and
synthetic data generated by
GANs.

32

Data Preprocessing
● Steps: Address missing data, remove outliers, and normalize data

to prepare for effective training.
Hyperparameter Configuration
● Importance: Critical for optimizing the training regimen.
● Parameters: Sequence sizes, sequence length, number of hidden

dimensions, batch size.
Hyperparameter Tuning
● Method: Empirical approach with iterative adjustments based on

training outcomes and insights.
● Challenges: Identifying optimal settings due to the impact on

model performance.

TimeGAN Training
Generation of Telemetry Data

33

Model Selection
Generation of Telemetry Data

Lack of Consensus in Evaluating Synthetic Data Generated by
GANs
● Highlighted in (Brophy, 2023), there is no agreed method to

assess distributions created by GANs, specially for time series
data.

Complexity with Non-Stationary Data
● Non-stationary time series show varying statistical properties

over time, complicating traditional evaluation methods like KL
divergence.

● Real data variability vs. synthetic data constancy can lead to
misleading results when using traditional metrics.

34

Developing a New Metric
Designed to assess the similarity between real and synthetic
data distributions, focusing on statistical measures.
● Metric Calculation:
○ Interquartile Discrepancy: Measures the difference in dispersion

between real (𝑋) and synthetic (𝑦) datasets.
○ Median Difference: Addresses positional differences between

distributions.

Model Selection
Generation of Telemetry Data

35

Hands on
Two Possibilities

36

● Clone the following project from GitHub:
○ https://github.com/thiagocaproni/tutorial_timegan

● After cloning the project from GitHub, create the
environment by running the following command (where
‘environment.yml’ is located)
○ conda env create

● Then, type the following command:
○ conda activate ydata

GitHub
Generation of Telemetry Data

37

https://github.com/thiagocaproni/tutorial_timegan

1. Download the zip file from the following link:
○ https://drive.google.com/file/d/1kR0teCHU4Z2jCez75kcM61GArmP0CA

fY/view?usp=sharing
2. Unzip the file and upload the “tutorial” folder to the Google

Drive root folder
○ All paths used in Python scripts and notebooks are executed

considering that the “tutorial” folder is in the Google Drive root
directory.

3. Navigate to the following folder
○ tutorial -> code -> timegan

4. Open the notebook:
○ main.ipynb

Google Colab
Generation of Telemetry Data

38

https://drive.google.com/file/d/1kR0teCHU4Z2jCez75kcM61GArmP0CAfY/view?usp=sharing
https://drive.google.com/file/d/1kR0teCHU4Z2jCez75kcM61GArmP0CAfY/view?usp=sharing

5. Make sure, you are using a Python 3 session:

Google Colab
Generation of Telemetry Data

39

6. The first part is
compound with cells
to setup the
environment:

Google Colab
Generation of Telemetry Data

40

Open main notebook
Generation of Telemetry Data

7. Run the cells to setup the
environment in order to:

a. Install the ydata-synthetic
module (probably you be asked
to restart the session)

b. Mount the Google Drive folder
c. Access the “timegan” folder
d. Append the “data_process”

folder where is located the
script to preprocessing

41

Parameters file
Generation of Telemetry Data

1. Open the file: (code/timegan/params.py)
a. The script has the amount_of_models variable
b. Its value is factored to define the values of the following

hyperparameters:
■ seq_len (i): the sequence length would be the size of the temporal window of

each sequence used to train the model, that is, how many time steps (lines) each
sequence contains.

■ hidden_dim (j): Number of units or neurons in each hidden layer
■ batch_size (k): The batch size determines how many temporal sequences (or

how many data examples/lines) are included in a single batch for training.
c. The fatNum function in the script model_utility.py returns the

values of i, j and k that is used in several other scripts to assign the
hyperparameters variations for training, generating and evaluating
models.

42

def loadDataSet(self, path_int, path_dash):

 # Load the INT and DASH datasets from specified paths

 df_int = pd.read_csv(path_int, sep = ',')

 df_dash = pd.read_csv(path_dash, sep = ';')

 # from milliseconds to seconds

 self.transformTimeStamp(df_dash)

 df_int = df_int.loc[df_int.groupby('timestamp')['deq_timedelta1'].idxmax()]

 # Set 'timestamp' as the index for the INT dataset

 df_int.set_index('timestamp', inplace=True)

 # Merge the INT and DASH datasets on their timestamp indices and reset the merged DataFrame's index

 self.dataset = pd.merge(df_int, df_dash, left_index=True, right_index=True).reset_index()

Preprocessing
(code/data_process/preprocess_data.py)
Generation of Telemetry Data

43

 def preProcessData(self, num_cols, cat_cols, random):

 # Fill missing values in numerical columns with their mean

 for i in num_cols:

 self.dataset[i].fillna(self.dataset[i].mean(), inplace=True)

 # Perform one-hot encoding if there are categorical columns

 if len(cat_cols) > 0:

 self.hotEncode()

 cat_cols = [0,1,2]

 # Create a copy of the dataset with only the processed columns

 self.processed_data = self.dataset[num_cols + cat_cols].copy()

 self.cat_cols = cat_cols

 self.num_cols = num_cols

 # Randomly shuffle the dataset if requested

 if random == True:

 idx = np.random.permutation(self.processed_data.index)

 self.processed_data = self.processed_data.reindex(idx)

Preprocessing
(code/data_process/preprocess_data.py)
Generation of Telemetry Data

44

def loadDp(random, outliers):

 dp = DataPre()

 #Loading and mergint INT and DASH datasets

 dp.loadDataSet(path_int='../../../datasets/log_INT_TD-32_100.csv',

 path_dash='../../../datasets/dash_TD-32_100.csv')

 #preprocessing data

 dp.preProcessData(params.num_cols, cat_cols=params.cat_cols, random=random)

 #removing columns with same values

 dp.removeSameValueAttributes()

 if outliers == False:

 dp.removeOutliers()

 #printing processed data

 dp.processed_data

 return dp

Train
(code/timegan/train/timegan32.py)
Generation of Telemetry Data

45

def train(dp, seq_len, n_seq, hidden_dim, noise_dim, dim, batch_size, model, train_steps):

 learning_rate = 5e-4

 gan_args = ModelParameters(batch_size=batch_size,

 lr=learning_rate,

 noise_dim=noise_dim,

 layers_dim=dim)

 #normalizing the data

 processed_data = real_data_loading(dp.processed_data.values, seq_len=seq_len)

 synth = TimeGAN(model_parameters=gan_args, hidden_dim=hidden_dim, seq_len=seq_len, n_seq=n_seq, gamma=1)

 synth.train(processed_data, train_steps=train_steps)

 synth.save(model)

Train
(code/timegan/train/timegan32.py)
Generation of Telemetry Data

46

Train
(code/timegan/train/timegan32.py)
Generation of Telemetry Data

47

dp = loadDp(random=False, outliers=False)

iMax, jMax, kMax = ModelUtility.fatNum(params.amount_of_models) # Change the file params.py

print("\nNumber of models" + str(params.amount_of_models) + ' iMax: ' + str(iMax) + ' jMax: ' + str(jMax) + ' kMax: ' + str(kMax))

print("Num GPUs Available: ", len(tf.config.list_physical_devices('GPU')))

try:

 # Specify an valid GPU device

 with tf.device('/device:GPU:0'):

 for i in range(0,iMax):

 for j in range(0,jMax):

 for k in range(0,kMax):

 train(dp,

 seq_len=(50*(i)+50),

 n_seq=params.merged_columns_len,

 hidden_dim=(20*(j)+20),

 noise_dim=32,

 dim=128,

 batch_size=(28*(k) + 100),

 model=str('../saved_models/so32_seqlen_'+ str((50*(i) + 50)) + '_hidim_' + str(20*(j)+20) + '_batch_' + str(28*(k) + 100) + '.pkl'),

 train_steps=params.train_steps)

except RuntimeError as e:

 print(e)

Train
(code/timegan/train/timegan32.py)
Generation of Telemetry Data

48

def loadSynthData(model32, model64, number_of_windows):

 synth_32 = TimeGAN.load(model32)

 synth_data_32 = synth_32.sample(number_of_windows)

 synth_64 = TimeGAN.load(model64)

 synth_data_64 = synth_64.sample(number_of_windows)

 synth_data_32[:,:,13:16][synth_data_32[:,:,13:16] >= 0.5] = 1

 synth_data_32[:,:,13:16][synth_data_32[:,:,13:16] < 0.5] = 0

 synth_data_64[:,:,13:16][synth_data_64[:,:,13:16] >= 0.5] = 1

 synth_data_64[:,:,13:16][synth_data_64[:,:,13:16] < 0.5] = 0

 return synth_data_32, synth_data_64

Data Generation
(code/timegan/data_generation/generate_synth_data.py)
Generation of Telemetry Data

49

def loadRealData(dsint32, dsint64, dsdash32, dsdash64, num_cols, cat_cols, sample_size, randon, outliers):

 dp32 = DataPre()

 dp32.loadDataSet(path_int=dsint32, path_dash=dsdash32)

 dp32.preProcessData(num_cols, cat_cols=cat_cols, random=randon)

 if outliers == False:

 dp32.removeOutliers()

 real_data_32 = dp32.processed_data

 real_data_32 = real_data_32[0:sample_size].copy()

 real_data_32 = real_data_32.values

 #loading 64 bit buffer dataset

 dp64 = DataPre()

 dp64.loadDataSet(path_int=dsint64, path_dash=dsdash64)

 dp64.preProcessData(num_cols, cat_cols=cat_cols, random=randon)

 if outliers == False:

 dp64.removeOutliers()

 real_data_64 = dp64.processed_data

 real_data_64 = real_data_64[0:sample_size].copy()

 real_data_64 = real_data_64.values

 return real_data_32, real_data_64

Data Generation
(code/timegan/data_generation/generate_synth_data.py)
Generation of Telemetry Data

50

def getStatistics(data):

 median = np.median(data)

 percentile_25 = np.percentile(data, 25)

 percentile_75 = np.percentile(data, 75)

 return [percentile_25, median, percentile_75]

def genStatisctics(real_32, synth_32, real_64, synth_64, sample_size, num_cols):

 dict = {}

 for j, col in enumerate(num_cols):

 dict[col] = [getStatistics(real_32[:,j][:sample_size]),

 getStatistics(synth_32[:,j][:sample_size]),

 getStatistics(real_64[:,j][:sample_size]),

 getStatistics(synth_64[:,j][:sample_size])]

 return dict

Data Generation
(code/timegan/data_generation/generate_synth_data.py)
Generation of Telemetry Data

51

def createDataSet(seq_len, data):

 lines = int(params.synth_sample_size/seq_len)

 dataset = np.zeros(lines * seq_len * params.merged_columns_len).reshape(lines*seq_len, params.merged_columns_len)

 for i in range(0,lines):

 for j in range(0, seq_len):

 dataset[(i*seq_len) + j] = data[i][j][:]

 return dataset

Data Generation
(code/timegan/data_generation/generate_synth_data.py)
Generation of Telemetry Data

52

def getMetrics(statistic_data):

 metric32 = (abs((statistic_data[0][2] - statistic_data[0][0]) - (statistic_data[1][2] - statistic_data[1][0])) +

 abs(statistic_data[0][1] - statistic_data[1][1]))

 metric64 = (abs((statistic_data[2][2] - statistic_data[2][0]) - (statistic_data[3][2] - statistic_data[3][0])) +

 abs(statistic_data[3][1] - statistic_data[2][1]))

 return metric32, metric64

def get_allfeatures_metrics(metrics, model_index, statistic_data):

 for j, col in enumerate(params.num_cols):

 metrics[0][model_index][j], metrics[1][model_index][j] = getMetrics(statistic_data.get(col))

Data Generation
(code/timegan/data_generation/generate_synth_data.py)
Generation of Telemetry Data

53

def getFeaturesBestMetricsOfModels(models, metrics):

 sum32, sum64 = sumFeatureMetricsOfModels(models, metrics)

 index = np.argmin(sum32)

 model = getModelNameByIndex(index)

 #print('bestmodel_int32: ' + model + ' index: ' + str(index))

 best_32 = models.get(model)[0]

 index = np.argmin(sum64)

 model = getModelNameByIndex(index)

 #print('bestmodel_int64: ' + model + ' index: ' + str(index))

 best_64 = models.get(model)[0]

 index = np.argmax(sum32)

 model = getModelNameByIndex(index)

 #print('worst_int32: ' + model + ' index: ' + str(index))

 worst_32 = models.get(model)[0]

 index = np.argmax(sum64)

 model = getModelNameByIndex(index)

 #print('worst_int32: ' + model + ' index: ' + str(index))

 worst_64 = models.get(model)[0]

 return best_32, worst_32, best_64, worst_64

Model Selection
code/timegan/evaluation/analyze_data_models.ipynb
Generation of Telemetry Data

54

def sumFeatureMetricsOfModels(models, data_metrics):

 sum32 = np.zeros(len(models))

 sum64 = np.zeros(len(models))

 for i in range(len(models)):

 sum32[i] = sum(data_metrics[0,i,:])

 sum64[i] = sum(data_metrics[1,i,:])

 return sum32, sum64

Model Selection
code/timegan/evaluation/analyze_data_models.ipynb
Generation of Telemetry Data

55

Applying synthetic data to an
RL agent

56

Real setup

Challenges
● The infrastructure requirements may not be feasible for a real setup;
● The agent training time depends on the video streaming duration.

Applying synthetic data to an RL agent
Generation of Telemetry Data

57

Possible solution

Applying synthetic data to an RL agent
Generation of Telemetry Data

Synthetic data

INT metadata and
QoS metrics

58

How can we implement it?

Applying synthetic data to an RL agent
Generation of Telemetry Data

Read INT metadata regarding the 32-bit and 64-bit queue sizes
from their respective CSV files

Join the data obtained in the previous step into a global
dictionary

Send data to the RL Environment and store the transition in an
experience replay buffer

Learn from experience

59

Applying synthetic data to an RL agent
Simulating the real network behavior

Synthetic data

receiveMetrics.py

action (increase the queue size to 64 or decrease it to 32)

INT metadata (32/64) and QoS metrics (32/64)

60

def readFile32():
 global sample32

 # Define the columns of interest
 cols = ['enq_qdepth1', 'deq_timedelta1', 'deq_qdepth1',
 ' enq_qdepth2', ' deq_timedelta2', ' deq_qdepth2',
 'enq_qdepth3', 'deq_timedelta3', 'deq_qdepth3',
 'FPS', 'Buffer', 'CalcBitrate', 'ReportedBitrate']

 # Read the CSV file in chunks of 4 seconds
 for sample32 in pd.read_csv('synthetic_data/best_modelsum_32.csv', chunksize=4):
 # Select only the specified columns
 sample32 = sample32[cols]
 # Process the data using the 'jointoRL' function with TYPE_32
 jointoRL(sample32, TYPE_32)

Start reading files in separate threads
thread64 = threading.Thread(target=readFile64)
thread64.start()

thread32 = threading.Thread(target=readFile32)
thread32.start()

Applying synthetic data to an RL agent
receiveMetrics.py
Simulating the real network behavior

61

def jointoRL(sample, t):

 global sampleJoin

 # Store the data sample in the global dictionary using the specified type 't'

 sampleJoin[t] = sample

 # If two data samples have been collected (INT and DASH metrics related to the 32 and 64 queue sizes),

 # call the 'sendtoRl' function

 if len(sampleJoin) == 2:

 sendtoRl(sampleJoin)

Applying synthetic data to an RL agent
receiveMetrics.py
Simulating the real network behavior

62

def sendtoRl(sample):

 global ddqn

 global env

 global experiment_id

 # Verify whether the agent has already taken actions

 if len(env.actions_history) == 0:

 # Determine the type of data sample and retrieve the DataFrame from the global dictionary accordingly

 if list(sample).index(0) == TYPE_32:

 df_INT = sample[TYPE_32].iloc[:,:9]

 df_dash = sample[TYPE_32].iloc[:,9:12]

 else:

 df_INT = sample[TYPE_64].iloc[:,:9]

 df_dash = sample[TYPE_64].iloc[:,9:12]

 # If the agent has already taken actions, verify which action was taken

 else:

 if env.actions_history[-1] == 0:

 df_INT = sample[TYPE_64].iloc[:,:9]

 df_dash = sample[TYPE_64].iloc[:,9:12]

 else:

Applying synthetic data to an RL agent
receiveMetrics.py
Simulating the real network behavior

63

 df_INT = sample[TYPE_32].iloc[:,:9]

 df_dash = sample[TYPE_32].iloc[:,9:12]

 # Convert data to numpy arrays

 current_state = df_INT.to_numpy()

 dash_state = df_dash.to_numpy()

 # Get state dimensionality

 state_dim = df_INT.shape[1]

 # Choose an action using epsilon-greedy policy

 action = ddqn.epsilon_greedy_policy(current_state[FOURTH_SECOND].reshape(-1, state_dim))

 # Take the chosen action and observe the next state, reward, and done flag

 current_state, next_state, reward, done, _ = env.take_action(action, current_state, dash_state)

 # If next state is available, memorize the transition and perform experience replay

 if next_state is not None:

 print("next state received, memorizing transition")

Applying synthetic data to an RL agent
receiveMetrics.py
Simulating the real network behavior

64

 ddqn.memorize_transition(current_state[FOURTH_SECOND],

 env.actions_history[-2], # Action performed before reward calculation

 reward,

 next_state[FOURTH_SECOND],

 0.0 if done else 1.0)

 if ddqn.train:

 ddqn.experience_replay()

 print("\n==\n")

 print("last action: {0} | reward: {1} | fps: {2} | "

 "Buffer size: {3}".format(

 env.actions_history[-1], env.reward_history[-1],

 env.fps_history[-1], env.buffer_size[-1]))

 print("\n==\n")

Applying synthetic data to an RL agent
receiveMetrics.py
Simulating the real network behavior

65

Generation of Synthetic
Network Trace
NetDiffusion: Network Data
Augmentation Through
Protocol-Constrained Traffic Generation
Jiang, Xi and Liu, Shinan and Gember-Jacobson, Aaron and
Bhagoji, Arjun Nitin and Schmitt, Paul and Bronzino, Francesco
and Feamster, Nick

66

nPrint
Generation of Synthetic Network Trace

67

nPrint
Generation of Synthetic Network Trace

68

We can be infer the payload
length from header fields such

as the IP “Total Length”

NetDiffusion: Workflow
Generation of Synthetic Network Trace

69

NetDiffusion: Workflow (Example)

Synthetic Amazon network traffic outputs: (1) Using ControlNet, it detect
regions present in the original traffic and ensure protocol and header field
value distribution conformance by generating within specified regions. (2)
Applying a post-generation heuristic to refine field details for protocol
conformance.

Generation of Synthetic Network Trace

70

Hands on
Generation of Synthetic Network Trace

https://github.com/arielgoes/NetDiffu
sion_Generator.git

71

https://github.com/arielgoes/NetDiffusion_Generator.git
https://github.com/arielgoes/NetDiffusion_Generator.git

NetDiffusion: Workflow
Generation of Synthetic Network Trace

72

Steps 1-4

1. Input converted nPrint to image
(1088x1024):

NetDiffusion: Main Steps
Generation of Synthetic Network Trace

blue = -1 green = 1 red = 0
caption: “pixelated
network data, type-0”

2. Accessing the GUI

73

NetDiffusion: Main Steps

1. Input converted nprint to image
(1088x1024):

Generation of Synthetic Network Trace

blue = -1 green = 1 red = 0
caption: “pixelated
network data, type-0”

2. Accessing the GUI

74

NetDiffusion: Main Steps

3. Fine-tuning image/model/log paths

Generation of Synthetic Network Trace

4. Set max resolution to 816x768 and
enabling caption

75

NetDiffusion: Main Steps

3. Fine-tuning image/model/log paths

Generation of Synthetic Network Trace

4. Set max resolution to 816x768 and
enabling caption

76

NetDiffusion: Workflow
Generation of Synthetic Network Trace

77

Steps
5-6

NetDiffusion: Main Steps

5. Training the fine-tuned image

Generation of Synthetic Network Trace

78

NetDiffusion: Main Steps

6. Showing the image caption

Generation of Synthetic Network Trace

79

NetDiffusion: Workflow
Generation of Synthetic Network Trace

80

Step
7-14

What is a diffusion model (in
Generative AIs)?
Generation of Synthetic Network Trace

81

What is Stable Diffusion?

Main components:

Generation of Synthetic Network Trace

82
source: https://www.youtube.com/watch?v=_JZPKbEp6gk

https://www.youtube.com/watch?v=_JZPKbEp6gk

What is Stable Diffusion?

Main components:

Generation of Synthetic Network Trace

83
source: https://www.youtube.com/watch?v=_JZPKbEp6gk

https://www.youtube.com/watch?v=_JZPKbEp6gk

Stable Diffusion: U-Net
Generation of Synthetic Network Trace

84
source: https://www.youtube.com/watch?v=_JZPKbEp6gk

https://www.youtube.com/watch?v=_JZPKbEp6gk

Stable Diffusion: Text Encoder (CLIP)

Main components:

Generation of Synthetic Network Trace

85
source: https://www.youtube.com/watch?v=_JZPKbEp6gk

https://www.youtube.com/watch?v=_JZPKbEp6gk

Stable Diffusion: Text Encoder (CLIP)
Generation of Synthetic Network Trace

86
source: https://www.youtube.com/watch?v=_JZPKbEp6gk

https://www.youtube.com/watch?v=_JZPKbEp6gk

Stable Diffusion: Text Encoder (CLIP)
Generation of Synthetic Network Trace

87
source: https://www.youtube.com/watch?v=_JZPKbEp6gk

https://www.youtube.com/watch?v=_JZPKbEp6gk

Stable Diffusion: Variational
Autoencoder (VAE)

Main components:

Generation of Synthetic Network Trace

88
source: https://www.youtube.com/watch?v=_JZPKbEp6gk

https://www.youtube.com/watch?v=_JZPKbEp6gk

Stable Diffusion: Variational
Autoencoder (VAE)
Generation of Synthetic Network Trace

89
source: https://www.youtube.com/watch?v=_JZPKbEp6gk

https://www.youtube.com/watch?v=_JZPKbEp6gk

Stable Diffusion: Noise Scheduler

Main components:

Generation of Synthetic Network Trace

90
source: https://www.youtube.com/watch?v=_JZPKbEp6gk

https://www.youtube.com/watch?v=_JZPKbEp6gk

Stable Diffusion: Noise Scheduler
Generation of Synthetic Network Trace

91
source: https://www.youtube.com/watch?v=_JZPKbEp6gk

https://www.youtube.com/watch?v=_JZPKbEp6gk

What is Low-Rank Adaptation (LoRa)?
Generation of Synthetic Network Trace

92
source: https://www.youtube.com/watch?v=X4VvO3G6_vw

https://www.youtube.com/watch?v=X4VvO3G6_vw

What is Low-Rank Adaptation (LoRa)?
Generation of Synthetic Network Trace

93
source: https://huggingface.co/blog/large-language-models

https://huggingface.co/blog/large-language-models

LoRa is an adapter
Generation of Synthetic Network Trace

94
source: https://www.youtube.com/watch?v=X4VvO3G6_vw

https://www.youtube.com/watch?v=X4VvO3G6_vw

For instance, an 3x3
eye-matrix has rank
3, since all columns
are independent

LoRa leverages low-rank (of a matrix)
Generation of Synthetic Network Trace

95

LoRa leverages low-rank (of a matrix)
Generation of Synthetic Network Trace

96

What is ControlNet?

prompt: “room”
ControlNet with M-LSD Lines

Generation of Synthetic Network Trace

97

NetDiffusion: Main Steps

7. Installing ControlNet extension

Generation of Synthetic Network Trace

98

NetDiffusion: Main Steps

8. Restarting WEB-UI and showing
installed ControlNet extension

Generation of Synthetic Network Trace

9. Showing the LoRA models

99

NetDiffusion: Main Steps

8. Restarting WEB-UI and showing
installed ControlNet extension

Generation of Synthetic Network Trace

9. Showing the LoRA models

100

NetDiffusion: Main Steps

10. Upscaling the final image from
816x768 to 1088x1024

Generation of Synthetic Network Trace

101

NetDiffusion: Main Steps

11. Setting up ControlNet with Canny
filter

Generation of Synthetic Network Trace

102

NetDiffusion: Main Steps

12. Setting the final prompt

13. Generating the final image

Generation of Synthetic Network Trace

103

NetDiffusion: Main Steps

12. Setting the final prompt

13. Generating the final image

Generation of Synthetic Network Trace

104

NetDiffusion: Main Steps

14. Visualizing the final image

Generation of Synthetic Network Trace

105

NetDiffusion: Workflow
Generation of Synthetic Network Trace

106

Step
15-17

NetDiffusion: Main Steps

15. Listing the final generated image

16. Post-processing the final image

Generation of Synthetic Network Trace

107

NetDiffusion: Main Steps

15. Listing the final generated image

16. Post-processing the final image

Generation of Synthetic Network Trace

108

NetDiffusion: Main Steps

17. Testing the replayable PCAPs with tcpreplay

Generation of Synthetic Network Trace

109

Conclusions and future
perspectives

110

Conclusions and future perspectives

● Role of Generative AIs: Simulate complex network environments and
generate high-fidelity synthetic data, enhancing training for RL
algorithms and network management.

● Evolution and Application: Development from basic generative models
to advanced GANs capable of producing realistic network traffic such
as PCAP files.

● Practical Use: Generating synthetic time series data for network
telemetry and training ML models, particularly valuable in
privacy-sensitive applications.

● Future Trends: Integration of GANs with network management tasks,
promising innovative solutions for dynamic, complex systems.

● Research Opportunities: Challenges in synthetic data generation,
network simulation, and AI integration suggest significant potential for
advancing network systems.

111

Thanks!

● Thiago Caproni Tavares
○ thiago.caproni@ifsuldeminas.edu.br

● Ariel Góes de Castro
○ a272319@dac.unicamp.br

● Leandro C. de Almeida
○ leandro.almeida@ifpb.edu.br

● Washington Rodrigo Dias da Silva
○ washingtonrds@estudante.ufscar.br

● Christian Esteve Rothenberg
○ chesteve@unicamp.br

● Luciano Verdi
○ verdi@ufscar.br

112

mailto:thiago.caproni@ifsuldeminas.edu.br
mailto:a272319@g.unicamp.br
mailto:leandro.almeida@ifpb.edu.br
mailto:washingtonrds@estudante.ufscar.br
mailto:chesteve@unicamp.br
mailto:verdi@ufscar.br

