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Motivation

Why are datasets important for computer networks?
To understand applications with different demands (e.g., latency, throughput) and 
propose solutions (e.g, protocols)

What are the real/existing dataset limitations?
Little data available and privacy of companies and users is affected

Why use synthetic data in computer networks?
Existing datasets may be scarce or outdated - i.e., do not reflect existing applications’ 
needs (e.g., TSN, 5G and beyond, video streaming)

Introduction
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● Generate synthetic data for machine learning model inputs

● Allocation for prediction or classification tasks

● Application in network simulations to maintain data privacy and 
enhance data quality

Practical Applications of GANs
Introduction
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Introduction to Generative Artificial 
Intelligence

Generative Artificial Intelligence: An Overview

● Encompasses algorithms and models capable of generating diverse data forms, including images, videos, 
text, and digital media.

● Has gained significant traction outside academic circles, largely due to advancements like ChatGPT, a 
Large Language Model (LLM).

Generative Adversarial Networks (GANs)

● Introduced primarily for image synthesis.
● Comprises two neural networks: the generator and the discriminator.
● Operates on game theory principles: the generator creates synthetic data, while the discriminator judges 

its authenticity.

Applications in Computer Networks

● Extension of GAN applications in computer networks, focusing on data synthesis and privacy.
● Utilization includes dataset augmentation, balancing, and simulation of complex data distributions.

Introduction
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So... can we generate synthetic network data?

Spoiler: yes
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Fundamentals of Generative 
Adversarial Networks
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● Definition: Machine learning framework consisting of two 
competing modules: the generator and the discriminator.

● Function: The generator creates synthetic data mimicking real 
data, while the discriminator learns to differentiate between the 
two.

● Training Dynamics: Both modules are trained adversarially until 
the discriminator cannot distinguish real from synthetic data.

● Complexity: The discriminator can be seen as employing 
supervised learning by using real data to train its judgment 
capabilities.

Generative Adversarial Networks (GANs)
Fundamentals of Generative Adversarial Networks
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Generative Adversarial Networks (GANs)

We summarize the GAN training as 
follows:
1. First, we feed the generator with (i) 

noise and a (ii) training sample

Fundamentals of GANs
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We summarize the GAN training as 
follows:
1. First, we feed the generator with (i) 

noise and a (ii) training sample
2. We merge it and generate a new 

sample
3. The Discriminator tries to guess 

which of the entries is the real one
4. The prediction is generally in the 

probability interval [0,1] (e.g., sigmoid 
function)

5. The generator is rewarded if it 
“fools” the discriminator 

6. The discriminator function loss is 
calculated (e.g., using Binary Cross 
Entropy (BCE))

Fundamentals of GANs
Generative Adversarial Networks (GANs)
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We summarize the GAN training as 
follows:
7. During this process, we adjust the 
learned distribution to the training 
distribution

Fundamentals of GANs

time

Generative Adversarial Networks (GANs)
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● Each scenario may require a different configuration of 
network hyperparameters:
○ # of neurons, optimization algorithm (e.g., Adam, SGD), Loss Function (e.g., MSE, 

Binary Cross-Entropy)

Challenges and limitations of GANs
Fundamentals of GANs
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● Each scenario may require a different configuration of 
network hyperparameters:
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● Each scenario may require a different configuration of 
network hyperparameters:
○ # of neurons, optimization algorithm (e.g., Adam, SGD), Loss Function (e.g., MSE, 

Binary Cross-Entropy)

● Which of the existing GAN models (e.g., StyleGANs, Diffusion 
GANs, TimeGANs) is more suitable for our scenario - i.e., 
packet/telemetry generation?
○ There is not a single “silver bullet” solution

● How about the timing requirements?
○ Inter- (e.g., three-way-handshake) and intra-packet (e.g., type of service in TCP 

headers)

Challenges and limitations of GANs
Fundamentals of GANs
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Joint Applications of GANs and RL
● Potential Benefits: Combining GANs' ability to generate realistic data with RL's 

optimization capabilities offers significant potential for enhancing network 
configurations and policies.

● Sim-to-Real Discrepancy: Addressing differences between simulated and real 
network data is crucial for practical applications.

Case Studies and Research
● Automated Network Slicing: Use of GANs for generating synthetic data to train 

RL models, improving the efficiency of network slicing and reducing 
simulation-to-real discrepancies.

● Resource Management in Network: Integrating deep RL with distributional 
modeling using GANs to manage resources efficiently.

● Estimating Channel Coefficients: Leveraging synthetic data generated by GANs 
to train RL algorithms for more accurate channel coefficient estimations.

GANs with RL in Network Applications
Fundamentals of GANs
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Agent-Environment Interaction in MDP 
(Markov decision process)

1. Time Step Initiation: At each specific time 𝑡.
2. Action Taken: The agent takes an action 𝐴.
3. State Observation: The agent observes the 

subsequent state 𝑆𝑡+1 resulting from its 
action.

4. Reward Assessment: A reward value 𝑅𝑡+1 is 
generated for each interaction, assessing 
the effectiveness of the action.

Objective: The process aims to maximize the 
reward value throughout the agent's training 
process, guiding the agent toward optimal 
decision-making.

Fundamentals of GANs
GANs with RL in Network Applications
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In-band Network Telemetry 
and Programmable Data Plane
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In-band Network Telemetry and 
Programmable Data Plane

● The data plane programmability facilitates 
the incorporation of intelligence during 
packet processing at the hardware's most 
proximate level, without the necessity for 
control plane intervention.

● Packets incorporate telemetry instructions 
within their header fields, facilitating the 
fine-grained collection and recording of 
network data.

● At each network hop along these paths, the 
data plane of the network devices employs 
telemetry instructions to facilitate the 
collection and inclusion of metadata within 
the packets as they traverse each node.
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Generation of Telemetry Data
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Infrastructure Overview
● Setup Components: Virtual machines interconnected via a P4 programmable data plane 

network.
● Application Deployment: CDN supporting MPEG-DASH for live streaming a soccer game.
● Load Management: WAVE, is versatile load generator used for orchestrating application 

instances over time.
● Network Architecture: Includes three programmable switches collecting INT telemetry data, 

complemented by a Video Client for metrics.

Generation of Telemetry Data
Problem definition
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Role of RL Agent
● Primary Function: Operates as a data plane optimizer, managing 

queue sizes in switches to enhance user experience.
● Goal: Optimize resource utilization to improve network 

infrastructure efficiency.

Generation of Telemetry Data
Problem definition
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Data Plane Optimization
● Challenges: Gaining cooperation from network operators for 

experiments can be difficult.
● Alternative Approach: Use a GAN trained on real data as a 

simulator to train the RL agent without needing a real setup.

Generation of Telemetry Data
Problem definition
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Generation of Telemetry Data
Methodology
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Training the RL Model
● Real Setup: RL agent trained using real data collected from the 

network.
● Synthetic Scenario: Offline training of the RL model using 

synthetic data from the TimeGAN to assess generalization 
capacity.

Importance of GAN in RL Training
● Dataset Issues: Original datasets may have imbalances, 

inadequacies, or erroneous values.
● GAN Advantages: Provides the ability to generate balanced, 

comprehensive data for diverse experimental scenarios.
● Efficiency Comparison: Evaluates the time efficiency of RL model 

training using synthetic versus real data.

Methodology
Generation of Telemetry Data
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Dataset Characterization 
Generation of Telemetry Data

Dataset Composition
● Video Metrics: Frames per second (FPS), bitrate, buffer size.
● Network Metrics: Queue depth at packet queuing (Enq Qdepth), 

packet queuing duration in microseconds (Deq Timedelta), and 
queue depth at packet dequeuing (Deq Qdepth).

Experiments and Data Collection
● Buffer Size Configurations: Two experiments with switch buffer 

sizes set at 32 and 64 packets.
● Data Merging and Filtering: Datasets merged based on 

timestamps, filtering out higher `Deq Timedelta' to focus on 
high-load conditions.
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Dataset Characterization 
Generation of Telemetry Data

Challenge of Non-Stationary Data
● Non-Stationarity: features 

within the Programmable Data 
Plane application exhibit 
non-stationary characteristics.

● Visualization: Non-stationarity 
visually demonstrated in the 
figure alongside.

● Implication: This nature 
complicates direct comparison 
between real telemetry data and 
synthetic data generated by 
GANs.
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Data Preprocessing
● Steps: Address missing data, remove outliers, and normalize data 

to prepare for effective training.
Hyperparameter Configuration
● Importance: Critical for optimizing the training regimen.
● Parameters: Sequence sizes, sequence length, number of hidden 

dimensions, batch size.
Hyperparameter Tuning
● Method: Empirical approach with iterative adjustments based on 

training outcomes and insights.
● Challenges: Identifying optimal settings due to the impact on 

model performance.

TimeGAN Training
Generation of Telemetry Data
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Model Selection
Generation of Telemetry Data

Lack of Consensus in Evaluating Synthetic Data Generated by 
GANs
● Highlighted in (Brophy, 2023), there is no agreed method to 

assess distributions created by GANs, specially for time series 
data.

Complexity with Non-Stationary Data
● Non-stationary time series show varying statistical properties 

over time, complicating traditional evaluation methods like KL 
divergence.

● Real data variability vs. synthetic data constancy can lead to 
misleading results when using traditional metrics.
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Developing a New Metric
Designed to assess the similarity between real and synthetic 
data distributions, focusing on statistical measures.
● Metric Calculation:
○ Interquartile Discrepancy: Measures the difference in dispersion 

between real (𝑋) and synthetic (𝑦) datasets.
○ Median Difference: Addresses positional differences between 

distributions.

Model Selection
Generation of Telemetry Data
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Hands on
Two Possibilities
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● Clone the following project from GitHub:
○ https://github.com/thiagocaproni/tutorial_timegan

● After cloning the project from GitHub, create the 
environment by running the following command (where 
‘environment.yml’ is located)
○ conda env create

● Then, type the following command:
○ conda activate ydata

GitHub
Generation of Telemetry Data
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1. Download the zip file from the following link:
○ https://drive.google.com/file/d/1kR0teCHU4Z2jCez75kcM61GArmP0CA

fY/view?usp=sharing
2. Unzip the file and upload the “tutorial” folder to the Google 

Drive root folder
○ All paths used in Python scripts and notebooks are executed 

considering that the “tutorial” folder is in the Google Drive root 
directory.

3. Navigate to the following folder
○ tutorial -> code -> timegan

4. Open the notebook:
○ main.ipynb

Google Colab
Generation of Telemetry Data
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5. Make sure, you are using a Python 3 session:

Google Colab
Generation of Telemetry Data
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6. The first part is 
compound with cells 
to setup the 
environment:

Google Colab
Generation of Telemetry Data
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Open main notebook
Generation of Telemetry Data

7. Run the cells to setup the 
environment in order to:

a. Install the ydata-synthetic 
module (probably you be asked 
to restart the session)

b. Mount the Google Drive folder
c. Access the “timegan” folder
d. Append the “data_process” 

folder where is located the 
script to preprocessing
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Parameters file
Generation of Telemetry Data

1. Open the file: (code/timegan/params.py)
a. The script has the amount_of_models variable
b. Its value is factored to define the values of the following 

hyperparameters:
■ seq_len (i): the sequence length would be the size of the temporal window of 

each sequence used to train the model, that is, how many time steps (lines) each 
sequence contains.

■ hidden_dim (j): Number of units or neurons in each hidden layer
■ batch_size (k): The batch size determines how many temporal sequences (or 

how many data examples/lines) are included in a single batch for training.
c. The fatNum function in the script model_utility.py returns the 

values of i, j and k that is used in several other scripts to assign the 
hyperparameters variations for training, generating and evaluating 
models.
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def loadDataSet(self, path_int, path_dash):

        # Load the INT and DASH datasets from specified paths

        df_int = pd.read_csv(path_int, sep = ',')

        df_dash = pd.read_csv(path_dash, sep = ';')

       

        # from milliseconds to seconds

        self.transformTimeStamp(df_dash)

        df_int = df_int.loc[df_int.groupby('timestamp')['deq_timedelta1'].idxmax()]

         # Set 'timestamp' as the index for the INT dataset

        df_int.set_index('timestamp', inplace=True)  

       

        # Merge the INT and DASH datasets on their timestamp indices and reset the merged DataFrame's index  

        self.dataset = pd.merge(df_int, df_dash, left_index=True, right_index=True).reset_index()

Preprocessing 
(code/data_process/preprocess_data.py)
Generation of Telemetry Data
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    def preProcessData(self, num_cols, cat_cols, random):

        # Fill missing values in numerical columns with their mean

        for i in num_cols:

            self.dataset[i].fillna(self.dataset[i].mean(), inplace=True)

       

        # Perform one-hot encoding if there are categorical columns

        if len(cat_cols) > 0:

            self.hotEncode()

            cat_cols = [0,1,2]

       

        # Create a copy of the dataset with only the processed columns

        self.processed_data = self.dataset[ num_cols + cat_cols ].copy()

        self.cat_cols = cat_cols

        self.num_cols = num_cols

         # Randomly shuffle the dataset if requested

        if random == True:

            idx = np.random.permutation(self.processed_data.index)

            self.processed_data = self.processed_data.reindex(idx)

Preprocessing 
(code/data_process/preprocess_data.py)
Generation of Telemetry Data
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def loadDp(random, outliers):

    dp = DataPre()

   

    #Loading and mergint INT and DASH datasets

    dp.loadDataSet(path_int='../../../datasets/log_INT_TD-32_100.csv',

                   path_dash='../../../datasets/dash_TD-32_100.csv')

    #preprocessing data

    dp.preProcessData(params.num_cols, cat_cols=params.cat_cols, random=random)

   

    #removing columns with same values

    dp.removeSameValueAttributes()

   

    if outliers == False:

        dp.removeOutliers()

   

    #printing processed data

    dp.processed_data

   

    return dp

Train
(code/timegan/train/timegan32.py) 
Generation of Telemetry Data
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def train(dp, seq_len, n_seq, hidden_dim, noise_dim, dim, batch_size, model, train_steps):    

    learning_rate = 5e-4

    gan_args = ModelParameters(batch_size=batch_size,

                              lr=learning_rate,

                              noise_dim=noise_dim,

                              layers_dim=dim)

    #normalizing the data

    processed_data = real_data_loading(dp.processed_data.values, seq_len=seq_len)

   

    synth = TimeGAN(model_parameters=gan_args, hidden_dim=hidden_dim, seq_len=seq_len, n_seq=n_seq, gamma=1)

    synth.train(processed_data, train_steps=train_steps)

    synth.save(model)

Train
(code/timegan/train/timegan32.py) 
Generation of Telemetry Data
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Train
(code/timegan/train/timegan32.py) 
Generation of Telemetry Data
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dp = loadDp(random=False, outliers=False)

iMax, jMax, kMax = ModelUtility.fatNum(params.amount_of_models) # Change the file params.py

print("\nNumber of models" + str(params.amount_of_models) + ' iMax: ' + str(iMax) + ' jMax: ' + str(jMax) + ' kMax: ' + str(kMax))

print("Num GPUs Available: ", len(tf.config.list_physical_devices('GPU')))

try:

  # Specify an valid GPU device

  with tf.device('/device:GPU:0'):

    for i in range(0,iMax):

      for j in range(0,jMax):

        for k in range(0,kMax):

          train(dp,

            seq_len=(50*(i)+50),

            n_seq=params.merged_columns_len,

            hidden_dim=(20*(j)+20),

            noise_dim=32,

            dim=128,

            batch_size=(28*(k) + 100),

            model=str('../saved_models/so32_seqlen_'+ str((50*(i) + 50)) + '_hidim_' + str(20*(j)+20) + '_batch_' +  str(28*(k) + 100) + '.pkl'),

            train_steps=params.train_steps)

except RuntimeError as e:

  print(e)

Train
(code/timegan/train/timegan32.py) 
Generation of Telemetry Data
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def loadSynthData(model32, model64, number_of_windows):

    synth_32 = TimeGAN.load(model32)

    synth_data_32 = synth_32.sample(number_of_windows)

   

    synth_64 = TimeGAN.load(model64)

    synth_data_64 = synth_64.sample(number_of_windows)

   

    synth_data_32[:,:,13:16][synth_data_32[:,:,13:16] >= 0.5] = 1

    synth_data_32[:,:,13:16][synth_data_32[:,:,13:16] < 0.5] = 0

    synth_data_64[:,:,13:16][synth_data_64[:,:,13:16] >= 0.5] = 1

    synth_data_64[:,:,13:16][synth_data_64[:,:,13:16] < 0.5] = 0

   

   

    return synth_data_32, synth_data_64

Data Generation
(code/timegan/data_generation/generate_synth_data.py) 
Generation of Telemetry Data
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def loadRealData(dsint32, dsint64, dsdash32, dsdash64, num_cols, cat_cols, sample_size, randon, outliers):

    dp32 = DataPre()

    dp32.loadDataSet(path_int=dsint32, path_dash=dsdash32)

    dp32.preProcessData(num_cols, cat_cols=cat_cols, random=randon)

    if outliers == False:

        dp32.removeOutliers()

   

    real_data_32 = dp32.processed_data

    real_data_32 = real_data_32[0:sample_size].copy()

    real_data_32 = real_data_32.values

   

    #loading 64 bit buffer dataset

    dp64 = DataPre()

    dp64.loadDataSet(path_int=dsint64, path_dash=dsdash64)

    dp64.preProcessData(num_cols, cat_cols=cat_cols, random=randon)

    if outliers == False:

        dp64.removeOutliers()

   

    real_data_64 = dp64.processed_data

    real_data_64 = real_data_64[0:sample_size].copy()

    real_data_64 = real_data_64.values

   

    return real_data_32, real_data_64

Data Generation
(code/timegan/data_generation/generate_synth_data.py) 
Generation of Telemetry Data
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def getStatistics(data):

    median = np.median(data)

    percentile_25 = np.percentile(data, 25)

    percentile_75 = np.percentile(data, 75)

   

    return [percentile_25, median, percentile_75]

def genStatisctics(real_32, synth_32, real_64, synth_64, sample_size, num_cols):

    dict = {}

    for j, col in enumerate(num_cols):

        dict[col] = [getStatistics(real_32[:,j][:sample_size]),

                     getStatistics(synth_32[:,j][:sample_size]),

                     getStatistics(real_64[:,j][:sample_size]),

                     getStatistics(synth_64[:,j][:sample_size])]

   

    return dict

Data Generation
(code/timegan/data_generation/generate_synth_data.py) 
Generation of Telemetry Data
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def createDataSet(seq_len, data):

    lines =  int(params.synth_sample_size/seq_len)

    dataset = np.zeros(lines * seq_len * params.merged_columns_len).reshape(lines*seq_len, params.merged_columns_len)

    for i in range(0,lines):

        for j in range(0, seq_len):

            dataset[(i*seq_len) + j] = data[i][j][:]

           

    return dataset

Data Generation
(code/timegan/data_generation/generate_synth_data.py) 
Generation of Telemetry Data
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def getMetrics(statistic_data):

    metric32 = (abs( (statistic_data[0][2] - statistic_data[0][0]) - (statistic_data[1][2] - statistic_data[1][0])) +

               abs(  statistic_data[0][1] - statistic_data[1][1] ) )

   

    metric64 = (abs( (statistic_data[2][2] - statistic_data[2][0]) - (statistic_data[3][2] - statistic_data[3][0])) +

               abs(  statistic_data[3][1] - statistic_data[2][1] ) )

    return metric32, metric64

def get_allfeatures_metrics(metrics, model_index, statistic_data):

    for j, col in enumerate(params.num_cols):

        metrics[0][model_index][j], metrics[1][model_index][j] = getMetrics(statistic_data.get(col))

Data Generation
(code/timegan/data_generation/generate_synth_data.py) 
Generation of Telemetry Data
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def getFeaturesBestMetricsOfModels(models, metrics):

    sum32, sum64 = sumFeatureMetricsOfModels(models, metrics)

   

    index = np.argmin(sum32)

    model = getModelNameByIndex(index)

    #print('bestmodel_int32: ' + model + ' index: ' + str(index))

    best_32 = models.get(model)[0]

   

    index = np.argmin(sum64)

    model = getModelNameByIndex(index)

    #print('bestmodel_int64: ' + model + ' index: ' + str(index))

    best_64 = models.get(model)[0]

   

    index = np.argmax(sum32)

    model = getModelNameByIndex(index)

    #print('worst_int32: ' + model + ' index: ' + str(index))

    worst_32 = models.get(model)[0]

   

    index = np.argmax(sum64)

    model = getModelNameByIndex(index)

    #print('worst_int32: ' + model + ' index: ' + str(index))

    worst_64 = models.get(model)[0]

    return best_32, worst_32, best_64, worst_64

Model Selection
code/timegan/evaluation/analyze_data_models.ipynb
Generation of Telemetry Data

54



def sumFeatureMetricsOfModels(models, data_metrics):

    sum32 = np.zeros(len(models))

    sum64 = np.zeros(len(models))

    for i in range(len(models)):

            sum32[i] = sum(data_metrics[0,i,:])

            sum64[i] = sum(data_metrics[1,i,:])

           

    return sum32, sum64

Model Selection
code/timegan/evaluation/analyze_data_models.ipynb
Generation of Telemetry Data
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Applying synthetic data to an 
RL agent
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Real setup

Challenges
● The infrastructure requirements may not be feasible for a real setup;
● The agent training time depends on the video streaming duration.

Applying synthetic data to an RL agent
Generation of Telemetry Data
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Possible solution

Applying synthetic data to an RL agent
Generation of Telemetry Data

Synthetic data

INT metadata and 
QoS metrics
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How can we implement it?

Applying synthetic data to an RL agent
Generation of Telemetry Data

Read INT metadata regarding the 32-bit and 64-bit queue sizes 
from their respective CSV files

Join the data obtained in the previous step into a global 
dictionary

Send data to the RL Environment and store the transition in an 
experience replay buffer

Learn from experience
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Applying synthetic data to an RL agent
Simulating the real network behavior

Synthetic data

receiveMetrics.py

action (increase the queue size to 64 or decrease it to 32)

INT metadata (32/64) and QoS metrics (32/64)
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def readFile32():
    global sample32

    # Define the columns of interest
    cols = ['enq_qdepth1', 'deq_timedelta1', 'deq_qdepth1',
            ' enq_qdepth2', ' deq_timedelta2', ' deq_qdepth2',
            'enq_qdepth3', 'deq_timedelta3', 'deq_qdepth3',
            'FPS', 'Buffer', 'CalcBitrate', 'ReportedBitrate']

    # Read the CSV file in chunks of 4 seconds
    for sample32 in pd.read_csv('synthetic_data/best_modelsum_32.csv', chunksize=4):
        # Select only the specified columns
        sample32 = sample32[cols]
        # Process the data using the 'jointoRL' function with TYPE_32
        jointoRL(sample32, TYPE_32)

# Start reading files in separate threads
thread64 = threading.Thread(target=readFile64)
thread64.start()

thread32 = threading.Thread(target=readFile32)
thread32.start()

Applying synthetic data to an RL agent
receiveMetrics.py
Simulating the real network behavior
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def jointoRL(sample, t):

    global sampleJoin

    # Store the data sample in the global dictionary using the specified type 't'

    sampleJoin[t] = sample

    # If two data samples have been collected (INT and DASH metrics related to the 32 and 64 queue sizes),

    # call the 'sendtoRl' function

    if len(sampleJoin) == 2:

        sendtoRl(sampleJoin)

Applying synthetic data to an RL agent
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def sendtoRl(sample):

    global ddqn

    global env

    global experiment_id

    # Verify whether the agent has already taken actions

    if len(env.actions_history) == 0:

        # Determine the type of data sample and retrieve the DataFrame from the global dictionary accordingly

        if list(sample).index(0) == TYPE_32:

            df_INT = sample[TYPE_32].iloc[:,:9]

            df_dash = sample[TYPE_32].iloc[:,9:12]

        else:

            df_INT = sample[TYPE_64].iloc[:,:9]

            df_dash = sample[TYPE_64].iloc[:,9:12]

    # If the agent has already taken actions, verify which action was taken

    else:

        if env.actions_history[-1] == 0:

            df_INT = sample[TYPE_64].iloc[:,:9]

            df_dash = sample[TYPE_64].iloc[:,9:12]

        else:
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            df_INT = sample[TYPE_32].iloc[:,:9]

            df_dash = sample[TYPE_32].iloc[:,9:12]

    # Convert data to numpy arrays

    current_state = df_INT.to_numpy()

    dash_state = df_dash.to_numpy()

    # Get state dimensionality

    state_dim = df_INT.shape[1]

    # Choose an action using epsilon-greedy policy

    action = ddqn.epsilon_greedy_policy(current_state[FOURTH_SECOND].reshape(-1, state_dim))

    # Take the chosen action and observe the next state, reward, and done flag

    current_state, next_state, reward, done, _ = env.take_action(action, current_state, dash_state)        

    # If next state is available, memorize the transition and perform experience replay

    if next_state is not None:

        print("next state received, memorizing transition")
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        ddqn.memorize_transition(current_state[FOURTH_SECOND],

                                env.actions_history[-2], # Action performed before reward calculation

                                reward,

                                next_state[FOURTH_SECOND],

                                0.0 if done else 1.0)

        if ddqn.train:

            ddqn.experience_replay()

    print("\n========================================\n")

    print("last action: {0} | reward: {1} | fps: {2} | "

          "Buffer size: {3}".format(

           env.actions_history[-1], env.reward_history[-1],

           env.fps_history[-1], env.buffer_size[-1]))

    print("\n========================================\n")

       

  

Applying synthetic data to an RL agent
receiveMetrics.py
Simulating the real network behavior

65



Generation of Synthetic 
Network Trace
NetDiffusion: Network Data 
Augmentation Through 
Protocol-Constrained Traffic Generation
Jiang, Xi and Liu, Shinan and Gember-Jacobson, Aaron and 
Bhagoji, Arjun Nitin and Schmitt, Paul and Bronzino, Francesco 
and Feamster, Nick
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nPrint
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nPrint
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We can be infer the payload 
length from header fields such 

as the IP “Total Length”



NetDiffusion: Workflow
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NetDiffusion: Workflow (Example)

Synthetic Amazon network traffic outputs: (1) Using ControlNet, it detect 
regions present in the original traffic and ensure protocol and header field 
value distribution conformance by generating within specified regions. (2) 
Applying a post-generation heuristic to refine field details for protocol 
conformance.
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Hands on
Generation of Synthetic Network Trace

https://github.com/arielgoes/NetDiffu
sion_Generator.git
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https://github.com/arielgoes/NetDiffusion_Generator.git
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NetDiffusion: Workflow
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Steps 1-4



1. Input converted nPrint to image 
(1088x1024):

NetDiffusion: Main Steps 
Generation of Synthetic Network Trace

blue = -1 green = 1 red = 0
caption: “pixelated 
network data, type-0”

2. Accessing the GUI
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NetDiffusion: Main Steps 

1. Input converted nprint to image 
(1088x1024):

Generation of Synthetic Network Trace

blue = -1 green = 1 red = 0
caption: “pixelated 
network data, type-0”

2. Accessing the GUI
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NetDiffusion: Main Steps 

3. Fine-tuning image/model/log paths

Generation of Synthetic Network Trace

4. Set max resolution to 816x768 and 
enabling caption
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NetDiffusion: Main Steps 

3. Fine-tuning image/model/log paths

Generation of Synthetic Network Trace

4. Set max resolution to 816x768 and 
enabling caption
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NetDiffusion: Workflow
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Steps 
5-6



NetDiffusion: Main Steps 

5. Training the fine-tuned image

Generation of Synthetic Network Trace
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NetDiffusion: Main Steps 

6. Showing the image caption

Generation of Synthetic Network Trace
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NetDiffusion: Workflow
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Step 
7-14



What is a diffusion model (in 
Generative AIs)?
Generation of Synthetic Network Trace
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What is Stable Diffusion?

Main components:

Generation of Synthetic Network Trace
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What is Stable Diffusion?

Main components:

Generation of Synthetic Network Trace

83
source: https://www.youtube.com/watch?v=_JZPKbEp6gk 

https://www.youtube.com/watch?v=_JZPKbEp6gk


Stable Diffusion: U-Net
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Stable Diffusion: Text Encoder (CLIP)

Main components:
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Stable Diffusion: Variational 
Autoencoder (VAE)

Main components:
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Stable Diffusion: Variational 
Autoencoder (VAE)
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Stable Diffusion: Noise Scheduler

Main components:
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Stable Diffusion: Noise Scheduler
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What is Low-Rank Adaptation (LoRa)?
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What is Low-Rank Adaptation (LoRa)?
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LoRa is an adapter
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For instance, an 3x3 
eye-matrix has rank 
3, since all columns 
are independent

LoRa leverages low-rank (of a matrix)
Generation of Synthetic Network Trace
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LoRa leverages low-rank (of a matrix)
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What is ControlNet?

prompt: “room”
ControlNet with M-LSD Lines

Generation of Synthetic Network Trace
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NetDiffusion: Main Steps 

7. Installing ControlNet extension

Generation of Synthetic Network Trace
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NetDiffusion: Main Steps 

8. Restarting WEB-UI and showing 
installed ControlNet extension

Generation of Synthetic Network Trace

9. Showing the LoRA models
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NetDiffusion: Main Steps 

8. Restarting WEB-UI and showing 
installed ControlNet extension
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NetDiffusion: Main Steps 

10. Upscaling the final image from 
816x768 to 1088x1024
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NetDiffusion: Main Steps 

11. Setting up ControlNet with Canny 
filter

Generation of Synthetic Network Trace
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NetDiffusion: Main Steps 

12. Setting the final prompt

13. Generating the final image

Generation of Synthetic Network Trace
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NetDiffusion: Main Steps 

12. Setting the final prompt

13. Generating the final image
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NetDiffusion: Main Steps 

14. Visualizing the final image

Generation of Synthetic Network Trace
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NetDiffusion: Workflow
Generation of Synthetic Network Trace
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Step 
15-17



NetDiffusion: Main Steps 

15. Listing the final generated image

16. Post-processing the final image

Generation of Synthetic Network Trace

107



NetDiffusion: Main Steps 

15. Listing the final generated image

16. Post-processing the final image
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NetDiffusion: Main Steps 

17. Testing the replayable PCAPs with tcpreplay

Generation of Synthetic Network Trace
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Conclusions and future 
perspectives
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Conclusions and future perspectives

● Role of Generative AIs: Simulate complex network environments and 
generate high-fidelity synthetic data, enhancing training for RL 
algorithms and network management.

● Evolution and Application: Development from basic generative models 
to advanced GANs capable of producing realistic network traffic such 
as PCAP files.

● Practical Use: Generating synthetic time series data for network 
telemetry and training ML models, particularly valuable in 
privacy-sensitive applications.

● Future Trends: Integration of GANs with network management tasks, 
promising innovative solutions for dynamic, complex systems.

● Research Opportunities: Challenges in synthetic data generation, 
network simulation, and AI integration suggest significant potential for 
advancing network systems.

111



Thanks!

● Thiago Caproni Tavares 
○ thiago.caproni@ifsuldeminas.edu.br 

● Ariel Góes de Castro
○ a272319@dac.unicamp.br 

● Leandro C. de Almeida
○ leandro.almeida@ifpb.edu.br 

● Washington Rodrigo Dias da Silva
○ washingtonrds@estudante.ufscar.br 

● Christian Esteve Rothenberg
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● Luciano Verdi
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