
TimeGAN as a Simulator for Reinforcement
Learning Training in Programmable Data Planes

Thiago C. Tavares∗†, Leandro C. de Almeida †‡, Washington R. D. Silva†, Marco Chiesa§, and Fábio L. Verdi†
∗IFSULDEMINAS Federal Institute of South of Minas Gerais, Poços de Caldas, MG, Brazil
†Department of Computer Science, Federal University of São Carlos, Sorocaba, SP, Brazil

‡Academic Unit of Informatics, Federal Institute of Paraı́ba, João Pessoa, PB, Brazil
§KTH Royal Institute of Technology, Stockholm, Sweden

∗thiago.caproni@ifsuldeminas.edu.br, ‡leandro.almeida@ifpb.edu.br, †washingtonrds@estudante.ufscar.br,
§mchiesa@kth.se, †verdi@ufscar.br

Abstract—This study explores the application of Time Series
GAN in a Programmable Data Plane (PDP) for enhancing Re-
inforcement Learning within the context of computer networks,
particularly in video applications. We address various challenges,
including dataset augmentation, balancing, and extended RL
training times in real setups. By leveraging synthetic data
generated by TimeGAN, we accelerate experimentation, enhance
dataset diversity, and simplify RL model training, ultimately
evaluating TimeGAN’s performance against real setups in re-
source optimization for PDPs using an RL agent. This research
contributes by directly comparing GAN usage and real setups,
bridging a gap in computer network literature, and highlighting
a 99% similarity in Quality of Service achieved by an RL model
trained with synthetic data, affirming TimeGAN’s potential as a
valuable simulator without compromising RL training efficacy.

Index Terms—Machine Learning, Generative Adversarial Net-
works, Autonomous Management

I. INTRODUCTION

Generative AI, including ChatGPT, produces various data
types like images, text, and media. It’s gained popularity
outside academia, emphasizing language understanding and
generation, evolving from traditional models with enhanced
learning capabilities due to increased parameters.

Within generative models, Generative Adversarial Networks
(GANs) stand out. Initially introduced for image synthesis,
GANs have gained prominence for capturing high-dimensional
data distributions. They rely on two neural networks: a gen-
erator and a discriminator, engaged in a game interplay as
outlined in [1]. The generator creates synthetic data to deceive
the discriminator, acting as a judge to distinguish real from
synthetic data. The goal is to reduce the discriminator’s ability
to differentiate between real and synthetic data.

Against this backdrop, GAN has seen an extension of its
application into the domain of computer networks over recent
years. Navidan et al. [2] have undertaken a classification
of GAN based on their specific application objectives. To
illustrate, GAN is capable of generating synthetic data to serve
as inputs for distinct learning models. Alternatively, GANs
may allocate one of their constituent neural networks—the
generator or the discriminator—toward tasks of data prediction
or classification, respectively

The utilization of GANs in computer networks depends
on the specific application’s needs. GANs serve as synthetic

data generators, acting as simulators that replicate the orig-
inal dataset’s distribution, preserving privacy. They are also
valuable for tasks like dataset augmentation and balancing,
enhancing representational capacity. Consequently, the result-
ing models enable the sharing of complex real-setup dynamics
while reducing complexities and maintaining data quality.

In computer networks, Machine Learning (ML) finds ap-
plication in real setups, simulated environments, and through
GANs emulating specific environment attributes. GANs excel
at embodying system characteristics and facilitating resource
orchestration in experimental frameworks for industry and
research. The significance of generative AI in Computer
Networks is underscored by the efforts of a group formed by
ATIS Alliance in October 2023, as documented in [3].

This work has two primary objectives: firstly, it involves
the generation of synthetic data using TimeGAN from a real
dataset obtained in a PDP scenario, where input metrics stem
from In-band Network Telemetry (INT) and DASH video to
train models. Secondly, the study explores the use of synthetic
data generated by TimeGAN as input for a Reinforcement
Learning (RL) agent aimed at optimizing switch buffer sizes.
The key advantage of employing synthetic data is the signifi-
cantly reduced time required for offline RL training, typically
taking just a few minutes, in contrast to time-intensive online
training. Our work is inspired by PDP scenarios and draws
from our prior research [4]. However, it can be applied to non-
programmable data planes as discussed in Section V. While
the utilization of an RL raises concerns about potential Service
Level Agreement (SLA) impacts during online phase training,
offline simulation-based training introduces simulation-to-real
discrepancies affecting real-world fidelity, as noted in [5]. In
this regard, TimeGAN offers a simpler approach to address
these complexities compared to traditional simulation-based
methods.

Our work also addresses concerns related to dataset aug-
mentation, balancing, and the extended training time of RL in
real setups. Utilizing synthetic data generated by TimeGAN
accelerates experimentation, as it eliminates the need to run
the entire application every time a change is made to the RL.
TimeGAN also enables the creation of diverse datasets and
enhances statistical variation for RL model training. We aim
to evaluate TimeGAN’s performance compared to a real setup

in the context of resource optimization within PDPs using an
RL agent, with a specific focus on a video DASH application.
This study contributes to filling a gap in the literature by
directly comparing GAN usage and real setups, particularly
in computer networks, where existing literature covers various
GAN types and applications [2], [6], but lacks insights into
the discrepancy between GANs and real setups, especially in
the context of complex Time Series data inherent to computer
networks.

Our main contributions can be summarized as follows.
We assess TimeGAN’s capacity as a data generator

for training RL models with real datasets. Our system-
atic methodology gauges TimeGAN’s data generation quality,
aiming to demonstrate its viability as a simulator to reduce
simulation-to-real discrepancies.

We designed a metric for the optimization of trained GAN
models to minimize differences from real data. The quality
of TimeGAN-trained distributions for each dataset feature
depends on hyperparameter settings. To address this, we in-
troduce a metric to systematically identify optimal models for
each feature. This metric helps generate a synthetic dataset that
closely resembles the original data’s characteristics, yielding
a more representative approximation.

We conduct a comparative analysis of RL training in
a real setup versus using TimeGAN as a simulator. Our
primary objective is to investigate performance disparities
between the two approaches, specifically assessing differences
in the training efficacy of the RL algorithm when utilizing
real data versus synthetic data generated by TimeGAN. Our
experimental results highlight a remarkable 99% similarity in
the Quality of Service (QoS) achieved by an RL model trained
with synthetic data as opposed to one trained in a real setup.

The paper is structured as follows: Section II covers GAN
fundamentals and the related works. Section III explains our
approach and methodology. Section IV discusses experiment
results. Section V shares lessons learned, and Section VI
presents the paper’s conclusions.

SW 1 SW 2 SW 3

Video Quality Level

30 fps 24 fps 18 fps

Control Plane
Reinforcement Learning

Video Client Load Generator

MPEG-DASH Server

Fig. 1. Real setup used for the evaluation composed by P4 BMv2 switches,
a DASH server and video clients.

II. RELATED WORK

Machine learning encompasses three main paradigms: su-
pervised, unsupervised, and reinforcement learning. GAN, for
instance, falls under unsupervised learning, with the generator
replicating data distributions and the discriminator playing
a role akin to supervised learning by comparing generated
and real data. GANs have diverse applications in Computer
Networks, including data generation, system optimization, and
data classification, as documented in existing literature [2], [7].
The choice of GAN variant depends on specific objectives,
and recent adaptations extend GANs to time-series network
data. There are a lot of GAN models, such as Vanilla GAN,
BIGAN, CGAN [8], InfoGAN [9], CycleGAN [10], EBGAN
[11], and LSGAN [12]. However, there is an inclination
towards encompassing time series data [7]. Specific GANs,
like CTGAN [13], DoppelGANger [14], and TimeGAN [15],
are tailored for learning the intricacies of time-series data [16].

GANs have versatile utility in data generation, addressing
issues like data imbalance and privacy preservation. They can
rectify skewed datasets, impute missing values, and obfuscate
sensitive information, fostering secure data exchange. These
data generators are important in creating new datasets, often
combined with complementary machine learning methods,
such as RL models, as demonstrated in [17]. RL is a machine
learning paradigm where an autonomous agent optimizes
decision-making in an unknown environment. It involves the
agent interacting with the environment, taking actions, and
receiving rewards or penalties based on the outcomes. Re-
wards follow positive outcomes, and penalties follow harmful
ones, driving the agent to optimize state-action pairs through
iterative trial-and-error exploration.

Zou et al. [18] and Gupta et al. [19] discuss RL’s applica-
tions in computer networks, enhancing resource optimization
and network efficiency. However, the integration of GAN
and RL remains underexplored, lacking a comprehensive ex-
ploration of their combined benefits. RL excels at decision
optimization, while GAN simulates complex data distributions,
aiding in training RL agents to optimize network configura-
tions in an offline way. However, when using RL in real setups
versus simulations, an important challenge arises: sim-to-real
discrepancy, observed across domains like communication,
computer vision, natural language processing, robotics, and
autonomous driving [20]. This discrepancy reflects the gap
between simulated and real environments, making it difficult to
bridge this divide in the context of computer network research,
where simulating real network configurations within complex
and layered network structures remains a significant challenge.

In [21], the authors discussed the Atlas system, an automatic
online service configuration for network slicing aimed at re-
ducing Sim-to-Real discrepancy through a three-stage method-
ology. Complementarily, in our study, we explore the po-
tential of reducing Sim-to-Real discrepancy using TimeGAN
instead of Bayesian optimization by training a Reinforcement
Learning model and comparing its performance with real
and synthetic data. On the other hand, [17] introduces a
strategy combining deep reinforcement learning and distribu-
tional modeling to optimize resource allocation in network
slices, improving efficiency and service quality by addressing

resource management complexities. While the authors utilize
a GAN to approximate state-action value distributions in an
RL model, our primary focus is on generating simulated
environmental data to facilitate RL training.

In [22], a CGAN-based approach addresses network slic-
ing in heterogeneous vehicular networks by partitioning the
network into virtual networks to meet diverse service re-
quirements. The authors propose using GANs to generate
customized network slices tailored to specific vehicular com-
munication needs, to optimize resource allocation, improve
communication quality, and facilitate efficient coexistence of
vehicular applications. In this case, the CGAN model is trained
using simulated data due to the absence of real-world datasets.

In [23], the integration of GAN and RL techniques is ex-
plored for estimating channel coefficients in wireless commu-
nication. The approach involves generating synthetic data with
GAN and using it to train RL algorithms, resulting in improved
accuracy for channel coefficient estimation. This highlights the
potential of machine learning in wireless communication. It’s
worth noting that the study relies on synthetic data generated
with Gaussian distributions for GAN training, without utilizing
a real experimental setup or real data.

Table I compares various works in the literature focused on
resource optimization in computer networks. Four key metrics
are analyzed: the use of (1) GANs and (2) RL for resource
optimization, (3) utilization of real data or real setup, and (4)
integration of simulation methods in the proposed solutions.

TABLE I
WORK COMPARISON

Metric Ours [21] [22] [23] [17]

Year 2023 2022 2021 2021 2019
GAN ✓ X X ✓ ✓
RL ✓ X ✓ ✓ ✓
Real ✓ ✓ X X X
Simulated ✓ ✓ ✓ ✓ ✓

We bridge a literature gap by using TimeGAN for simu-
lating real setups. Our methodology tackles network dataset
complexities and dynamics, emphasizing statistical training
and model selection. We evaluate the practicality of synthetic
data by deploying an RL agent in a real setup after offline
training with GAN-generated data, as detailed in Section III.

III. TIMEGAN AS A SIMULATOR

In this section, we delineate our proposal, structured into
distinct subsections comprising the problem definition, the
methodology employed to address the problem, and the tasks
associated with the construction of TimeGAN. This model
serves a dual purpose as both a generator of synthetic data
and a simulator, faithfully replicating the behavior of a real
setup.

A. Problem definition

As mentioned in Section II, there is a research gap in the
current literature regarding the comparative analysis between
GANs trained on original datasets and their application in
RL model training. This gap arises from the complexities of

executing certain ML models in operational scenarios. Opera-
tors typically adopt a monitoring-centric approach, monitoring
application performance, tracing data, and selecting datasets.
However, publicly accessible datasets are limited, and even
when real data acquisition is possible, replicating experiments
for comparisons under different conditions, such as meeting
distinct user requirements and SLAs, presents challenges.

As depicted in Figure 1, our study operates within a real
video application environment. This environment comprises an
MPEG DASH Server for network load generation, a network
with three programmable switches that provide INT telemetry,
and a Video Client for collecting video-related metrics. The
integration of INT, in conjunction with application metrics,
enables comprehensive monitoring of application behavior on
the network. Overseeing this setup is an RL agent, tasked with
enhancing user experience by optimizing switch queue sizes,
primarily aimed at resource allocation and network efficiency
improvement. Adjusting queue sizes is an important technique
for accommodating network traffic and influencing the QoS of
applications. For this reason, we applied this action to validate
our RL agent.

So, the RL model serves as a data plane optimizer, managing
queue sizes in three switches to enhance user experience.
Obtaining cooperation from network operators for such ex-
periments is often challenging. To address this, a mechanism
is devised to train the RL agent without a real setup, using
a GAN trained on real data as a simulator. Our approach
combines real setup training for the RL agent with dataset
storage for the GAN model. In contrast to online, offline
training of the RL model is conducted using synthetic data
generated by TimeGAN. This allows us to compare the RL
agent’s generalization capabilities in both scenarios: real setup
and its simulated counterpart using the GAN generator.

However, a pertinent question arises: given the availability
of datasets sourced from operators, the utilization of GAN
to train Machine Learning models, including Reinforcement
Learning methodologies, is necessary? Why not exclusively
rely upon the original dataset for the training of such models?

Collecting a dataset for GAN model training typically
involves obtaining data from operators or real setups, which
may suffer from issues like imbalance, inadequacy, missing
or erroneous values, and static characteristics. This limits the
feasibility of repeated experiments and statistical validation, as
seen in [24]. In contrast, a trained GAN can generate balanced
data without inconsistencies, enabling experimentation with
diverse data volumes and distributions for various scenarios.
Additionally, GAN accelerates RL model training compared
to real scenarios, enhancing the agent’s adaptability to broader
conditions in RL applications.

Consequently, this paper delineates a methodology wherein
the efficacy of an RL model is evaluated through its de-
ployment in conjunction with data generated by a TimeGAN
model. The TimeGAN is trained to use telemetry data obtained
from video applications situated within the PDPs. The follow-
ing exploration thereby offers insights into the viability and
performance of RL when trained with synthetic data generated
by TimeGAN.

B. Methodology

Broadly, the methodology adopted in this proposal is encap-
sulated within Fig. 2, and its implementation can be defined
through a delineation into four distinct steps as follows.

1) Creation of a Real Setup and Data Collection: In this
preliminary phase, the establishment of a tangible real setup
is undertaken, as presented in detail in Section III-A.

2) Dataset Recording and TimeGAN Model Training:
Within this stage, an ensemble of pertinent features is stored.
Among these features are switch telemetry metrics, notably
encompassing switch queue sizes and packet arrival times.
Simultaneously, the capture of video metrics, such as frames
per second (FPS) and resolution, is also undertaken. The
ascertained dataset comprises two distinct scenarios, character-
ized by dissimilar queue sizes—32 and 64 packets—affording
coverage of two operational settings.

3) Reinforcement Learning Training Utilizing Synthetic
Data: After training the TimeGAN model, the next step
involves training the RL algorithm with synthetic data. Two
synthetic datasets were generated, corresponding to two queue
sizes: 32 and 64 packets. The RL algorithm’s input depends
on the agent’s actions, which can transition the queue size
between these two values. When the agent takes an action to
change the queue size to 32 packets, the RL model receives
synthetic data from that dataset (scenario), and vice versa for
a queue size change to 64 packets.

4) Performance Evaluation of RL Models: This phase
conducts a comprehensive evaluation of two RL training
methods: one in a real setup and the other using synthetic data
from TimeGAN. The primary objective is not to optimize RL
model parameters but to assess the similarity of outcomes in
both scenarios. The evaluation aims to determine if TimeGAN
can effectively replicate RL training results, validating its
potential as a surrogate simulator without compromising RL
training efficacy.

The continuous line in Fig. 2 illustrates an online component
wherein the RL model undergoes real-time training (depicted
in step 1). Conversely, the GAN model training and data
generation undergo in an offline manner, as depicted in steps
2 and 3. Concluding the sequence, step 4 embodies the com-
parative evaluation conducted between the RL model, trained
dynamically in the real setup, and synthetic data engendered
by the TimeGAN algorithm.

C. Dataset characterization

Our dataset, centered on the Video Application within the
PDP context, comprises two distinct categories of metrics:
video metrics and network metrics, each residing in separate
datasets. The video metrics include frames per second (FPS),
bitrate, and buffer size. In contrast, the network metrics,
obtained from INT, consist of queue depth at packet queu-
ing (enq_qdepth1), packet queuing duration in microsec-
onds (timedelta1), and queue depth at packet dequeuing
(deq_qdepth1). The number after the metrics determines
the switches where they were collected on the network.

Our network configuration employed BMv2 software
switches with P4 code. Specific INT probes are sent from the
DASH server to the Video Client. This approach eliminates the

Switches
 (Data Plane) RLMPEG Dash

Server

Real
Datasets

Time
GAN

TimeGAN model
(synthetic data)

Compare RL
Models

Actions

INT and Video
Metrics

Actions

1

2 3

4

Online
Offline

Real Setup

States

States RL

Fig. 2. Proposed Methodology.

0 100 200 300
Samples in Time

0

5

10

15

Va
lu

es

enq_qdepth1

0 100 200 300
Samples in Time

18

20

22

24

26

28

30

Va
lu

es

FPS

Fig. 3. Real data plots for enq qdepht1 and FPS features.

need to modify data packets for telemetry metadata. Telemetry
metadata (32 bytes) was collected at each network node. Two
experiments were conducted to gather data from our real
setup, as discussed in Section III-A. The first experiment
used switches configured with 32-packet buffer size, while
the second utilized a 64-packet buffer size. Consequently,
we obtained two datasets, each representing the real setup
under differing buffer size conditions. These datasets were
merged based on timestamps, with higher timedelta1
samples filtered out to capture network behavior under high-
load conditions.

An essential characteristic of the telemetry values within our
PDP application is the non-stationary nature of all our features,
as visually demonstrated in Fig. 3. This data distribution
poses significant challenges in the endeavor to compare real
data with synthetic data generated by GANs. To address this
complexity, we introduce a metric in Section III-E. This metric
serves as a tool in our model selection process, aiding us in the
identification of the most suitable model capable of providing
the closest feature representation to the real dataset.

D. TimeGAN Training

TimeGAN is a generative model crafted to generate syn-
thetic time series data, intending to replicate the statistical
characteristics inherent to real-world time series datasets. The
training of a TimeGAN model encompasses a series of steps.

Firstly, we initiated the process with data preprocessing,
addressing concerns such as missing data imputation, outlier
removal, and data normalization. The configuration of hy-
perparameter values was also crucial since it plays a pivotal

role in TimeGAN’s training regimen. The determination of
sequence sizes or windows was a significant consideration.
These sizes are instrumental in the training, as they subdivide
the dataset into multiple ’snapshots,’ each designed to capture
the temporal behaviors within the time series.

Furthermore, other hyperparameters are variated, including
sequence length, the number of hidden dimensions, and batch
size. Hyperparameter tuning is a recognized challenge in
machine learning training, with various strategies available,
such as Grid Search. In our case, we adopted an empirical ap-
proach, wherein we iteratively adjusted hyperparameter values
based on prior training experiences and our insights into the
parameters that exerted the most significant influence on the
training process. Detailed hyperparameter values are outlined
in Table II. We executed these experiments using the YData
Synthetic API1 to facilitate our research endeavors.

Following the completion of the training processes, it came
to our attention that the loss values across all 54 training itera-
tions (27 for each buffer size setting for switches) exhibited a
degree of similarity. Consequently, we recognized the need to
develop a model selection methodology, the details of which
are expounded upon in Section III-E.

TABLE II
TRAINING HYPERPARAMETERS

Hyperparameters Values

Sequence size 50 100 150
Hidden Dimension 20 40 60
Batch Size 100 128 156

E. Models Selection

Assessing synthetic data generated by GANs is a challenge.
The lack of consensus on evaluation methods is evident
in studies like [25] and [26]. This challenge is even more
pronounced in the context of time series data, where recent
publications on the topic are scarce compared to more con-
ventional GAN models. Adding to the complexity, the dataset
we’ve collected is non-stationary, meaning it exhibits trends,
seasonality, and other systematic changes that cause statistical
properties like mean, variance, and autocovariance to vary
with time. This non-stationarity makes it difficult to apply
traditional tests like Kullback–Leibler (KL) divergence. For
instance, some trained GAN models may produce synthetic
data with constant values for certain features, whereas real
data often has high variability. If we were to use traditional
tests, the KL test results might favor distributions with constant
values, which is not what we want in practice.

In our experimentation, we noted through empirical obser-
vations that certain GAN models, which we have trained have
superior synthetic data for distinct features compared to others.
Consequently, we proposed a mechanism aimed at selecting
the most suitable model by analyzing each specific feature.

To address this objective, we introduce a metric constructed
through straightforward statistical measures, encompassing
quartiles and medians. The central concept revolves around

1https://github.com/ydataai/ydata-synthetic.

contrasting the distribution disparities exhibited by real and
generated synthetic data. Consequently, a more favorable
model for a given characteristic is indicated by a diminished
dissimilarity in data distribution between these two sources.
The calculation of this metric is depicted by Equation 1.
To initiate this calculation, it is imperative to determine the
discrepancy magnitude between the third and first quartiles
for both datasets: real (X) and synthetic (y). This calculation
furnishes the size of data dispersion, facilitating a comparison.

Subsequently, another calculation involves assessing the
variation between the sizes of these data dispersion, thereby
gauging the difference between real and synthetic data. How-
ever, determining the disparity in dispersion magnitude alone
might be insufficient, as the dispersion might have similar
sizes while maintaining a positional offset. To address this,
we calculate the difference in medians between the real and
synthetic datasets and incorporate this disparity alongside the
variance in dispersion sizes. Thus, a summation of these
differences between quartiles and median for each feature is
achieved and stored in metric (M) for all of the models. So,
a superior model is characterized by the minimal value of M ,
indicative of the least dispersion in data distribution between
real and synthetic data sources.

M =

n feats∑
n=1

|[Q3(Xn)−Q1(Xn)]− [Q3(yn)−Q1(yn)]|

+ |[med(Xn)−med(yn)]|
(1)

The algorithm presented in Algorithm 1 elucidates the pro-
cedure of selecting the optimal model for individual features.
The algorithm takes as its inputs arrays of models about the
two distinct scenarios exposed in Section III-D, specifically
those delineated by switch queue sizes of 32 and 64 packets.

The algorithm’s initial operation involves the computation
of the aforementioned metrics for each feature and all of the
trained models, as detailed earlier. After this metric com-
putation, an iteration wherein the algorithm determines the
summation of metrics for each model is achieved. So, the
minimum value of the sum of all features determines the best
model considering the models that were trained in our study.

The algorithm culminates by providing two arrays, each
comprising the features of the best model. These arrays
distinctly encapsulate the finest model under the respective
queue size scenarios, addressing the dual scenario of queue
sizes - 32 and 64 packets.

An evaluation of the proposal outlined in this section is
expounded upon in Section IV. The primary objective is
to provide an analysis of the synthetic data generated by
TimeGAN and its applicability in training an RL agent through
an offline approach, contrasting it with an agent trained in an
online format.

IV. EVALUATION

We evaluated our proposal after training as described in Sec-
tion III-D. We built 27 models with varying hyperparameters
(see Table II). In Section III-E, we calculated an evaluation

Algorithm 1 Optimal Model Selection
Input: models32,models64
Output: bestModel32, bestModel64

Initialisation :
1: metrics32← calcMetricsFeatures(models32)
2: metrics64← calcMetricsFeatures(models64)
3: for each mod32, mod64 in metrics32 and metrics64 do
4: sums32[mod32]← sumFeatsMetrics(metrics32)
5: sums64[mod64]← sumFeatsMetrics(metrics64)
6: end for
7: bestModel32← min(sums32)
8: bestModel64← min(sums64)
9: return bestModel32, bestModel64

metric for each model. This allowed us to rank the models
based on performance, with the best model having the lowest
metric value. Conversely, the worst model had the highest
metric value, indicating greater disparities compared to real
data.

Real32 SynthBest
32

SynthWorst
32

0

5

10

15

Va
lu

es

enq_qdepth1

Real64 SynthBest
64

SynthWorst
64

18

20

22

24

26

28

30

Va
lu

es

FPS

Fig. 4. Data distribution of enq qdepth1 and FPS features for 32-buffer and
64-buffer, respectively.

5 10 15
enq_qdepth1

0.2

0.4

0.6

0.8

1.0

CD
F

Real32
SynthBest
32
SynthWorst
32

20 22 24 26 28 30
FPS

0.5

0.6

0.7

0.8

0.9

1.0

CD
F

Real64
SynthBest
64
SynthWorst
64

Fig. 5. CDF of enq qdepth1 and FPS features for 32-buffer and 64-buffer,
respectively.

Given the extensive array of features under analysis, it is
unfeasible to present the complete set of examined features in
this paper2. Consequently, we have chosen to showcase plots
for only two specific features. Fig. 4 depicts two violin plots:
the first delineates the distribution of the enq_qdepth1 (an
INT metadata) feature within the context of a 32-buffer size,
while the second illustrates the FPS feature in the context of
a 64-buffer size.

2A repository containing the codes and analyses can be accessed at:
https://github.com/thiagocaproni/noms2024.

For comparison, we explain the differences in distribution
between real data, synthetic data generated by the best model,
and synthetic data produced by the worst model (for 32-
buffer size). This examination reveals that the distributions
generated by the best model bear a closer resemblance to
those observed in real data in comparison to the inferior
model. In the case of the enq_qdepth1 feature of the
worst model, disparities exist when juxtaposed with real data.
Contrarily, the distribution generated by the inferior model in
the context of the FPS feature aligns more closely with the real
data, particularly when considering interquartile ranges, albeit
exhibiting differences in median values. It is imperative to note
that while the inferior model may be good in replicating the
distribution of certain features, it may fall short in replicating
others. Hence, the critical criterion for model selection hinges
upon its ability to emulate favorable distributions across a
majority of features while maintaining fidelity to real data.

An alternative method for assessing the data distribution
of each feature involves the use of cumulative distribution
function (CDF) plots, as exemplified in Fig. 5. The figure
comprises two separate plots illustrating the CDFs for the
enq_qdepth1 and FPS features, respectively. In both in-
stances, it is evident that the best model exhibits a more
favorable data fit than real data, while the worst model falls
short in this regard.

Fig. 6 illustrates the correlation matrices for real data, the
best model, and the worst model. Certain features in real
data display noticeable intercorrelations, consistent with the
anticipated behavior of network and video-related attributes.
These expected correlations also extend to the synthetic data
generated by the models. However, it is worth noting that
some of the trained models cannot accurately capture these
correlations, resulting in less well-defined patterns. Despite
these variations, our approach of utilizing a metric for model
selection has proven effective for our use case. This effective-
ness is evident in the correlation matrix of the best model, as
shown in Fig. 6, where the expected correlation patterns are
better reproduced when compared to the worst model.

In [15], various methods for evaluating the quality of data
generated by a TimeGAN model are presented. These evalua-
tion mechanisms encompass visualization techniques utilizing
t-SNE and PCA, as well as the application of regression
models designed to predict samples generated by TimeGAN
models. However, the visualization approach requires human
intervention for manual assessment, thereby necessitating sub-
jective analysis to identify the most suitable model. In contrast,
employing a regression-based evaluation methodology proved
to be less suitable in our specific case. Our data exhibits non-
stationary characteristics, rendering the creation of an effective
regressor challenging.

Nevertheless, we implemented a simple Recurrent Neural
Network (RNN) using the Keras framework for regression
purposes, enabling a comparative analysis of real and synthetic
data. We employed the Adam optimizer and Mean Absolute
Error (MAE) as the loss function for this task. Our RNN was
primarily designed to predict the last sample within a data
window based on preceding samples. However, as expected,
the results for both real and synthetic data did not meet our

en
q_

qd
ep

th
1

de
q_

tim
ed

el
ta

1
de

q_
qd

ep
th

1
 d

eq
_t

im
ed

el
ta

2
de

q_
tim

ed
el

ta
3

Bu
ffe

r
Re

po
rte

dB
itr

at
e

FP
S

Ca
lcB

itr
at

e

enq_qdepth1
deq_timedelta1

deq_qdepth1
 deq_timedelta2
deq_timedelta3

Buffer
ReportedBitrate

FPS
CalcBitrate

1.0 0.4 0.4 -0.1 -0.0 0.1 0.1 0.1 0.1

0.4 1.0 0.7 -0.0 -0.0 0.1 0.1 0.1 0.1

0.4 0.7 1.0 -0.0 -0.0 0.1 0.1 0.1 0.1

-0.1 -0.0 -0.0 1.0 0.0 -0.0 -0.0 -0.0 -0.0

-0.0 -0.0 -0.0 0.0 1.0 -0.0 -0.0 -0.0 -0.0

0.1 0.1 0.1 -0.0 -0.0 1.0 0.8 0.8 0.7

0.1 0.1 0.1 -0.0 -0.0 0.8 1.0 1.0 0.8

0.1 0.1 0.1 -0.0 -0.0 0.8 1.0 1.0 0.8

0.1 0.1 0.1 -0.0 -0.0 0.7 0.8 0.8 1.0

Real32

0.0

0.2

0.4

0.6

0.8

1.0

en
q_

qd
ep

th
1

de
q_

tim
ed

el
ta

1
de

q_
qd

ep
th

1
 d

eq
_t

im
ed

el
ta

2
de

q_
tim

ed
el

ta
3

Bu
ffe

r
Re

po
rte

dB
itr

at
e

FP
S

Ca
lcB

itr
at

e

enq_qdepth1
deq_timedelta1

deq_qdepth1
 deq_timedelta2
deq_timedelta3

Buffer
ReportedBitrate

FPS
CalcBitrate

1.0 0.4 0.4 -0.1 0.5 -0.1 0.1 -0.1 0.0

0.4 1.0 0.9 -0.4 -0.3 -0.0 0.1 -0.1 -0.2

0.4 0.9 1.0 -0.4 -0.3 0.1 0.2 0.0 -0.1

-0.1 -0.4 -0.4 1.0 0.4 0.0 0.1 0.1 0.2

0.5 -0.3 -0.3 0.4 1.0 -0.2 -0.1 -0.2 -0.0

-0.1 -0.0 0.1 0.0 -0.2 1.0 0.7 0.7 0.7

0.1 0.1 0.2 0.1 -0.1 0.7 1.0 0.9 0.8

-0.1 -0.1 0.0 0.1 -0.2 0.7 0.9 1.0 0.8

0.0 -0.2 -0.1 0.2 -0.0 0.7 0.8 0.8 1.0

Best32

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

en
q_

qd
ep

th
1

de
q_

tim
ed

el
ta

1
de

q_
qd

ep
th

1
 d

eq
_t

im
ed

el
ta

2
de

q_
tim

ed
el

ta
3

Bu
ffe

r
Re

po
rte

dB
itr

at
e

FP
S

Ca
lcB

itr
at

e

enq_qdepth1
deq_timedelta1

deq_qdepth1
 deq_timedelta2
deq_timedelta3

Buffer
ReportedBitrate

FPS
CalcBitrate

1.0 0.8 0.7 -0.8 0.0 -0.0 0.7 0.5 0.1

0.8 1.0 0.9 -0.9 -0.2 -0.1 0.6 0.4 0.2

0.7 0.9 1.0 -0.8 -0.2 -0.1 0.6 0.4 0.3

-0.8 -0.9 -0.8 1.0 0.2 -0.0 -0.6 -0.4 -0.2

0.0 -0.2 -0.2 0.2 1.0 -0.3 -0.1 -0.4 -0.6

-0.0 -0.1 -0.1 -0.0 -0.3 1.0 0.2 0.6 0.2

0.7 0.6 0.6 -0.6 -0.1 0.2 1.0 0.7 0.3

0.5 0.4 0.4 -0.4 -0.4 0.6 0.7 1.0 0.4

0.1 0.2 0.3 -0.2 -0.6 0.2 0.3 0.4 1.0

Worst32

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Fig. 6. Correlation matrix to show the relationship among features for real, best, and worst models for 32-buffer size.

expectations. The code for this regression model is available
in our Git repository for reference.

As a result of the aforementioned challenges, our model
selection methodology relied exclusively on statistical analy-
ses. Furthermore, we adopted an alternative approach for the
evaluation of our synthetic data. We devised an RL agent,
trained on both real and synthetic data, and subsequently as-
sessed its performance under both conditions. This evaluation
is provided in Section IV-A.

A. Reinforcement Learning

To evaluate the feasibility of employing TimeGAN as a
network traffic simulator for video applications, we modeled
a Deep Q-Network (DQN) [27] agent using the Multi-layer
Perceptron (MLP) architecture, comprising an input layer with
units for each INT feature, 2 hidden layers with 24 Rectified
Linear Units (ReLU) each, and an output layer with 2 units -
one for each action the agent could take (increase queue size
to 64 or decrease it to 32).

We elaborated the agent-environment workflow considering
the DASH Server video streaming chunk size as time steps,
thus, the agent should take an action to increase or decrease
the queue size every 4 seconds to maximize the video client’s
Local Buffer Occupancy (LBO) and FPS. These metrics are
fundamentally correlated, such that as higher the LBO, the
higher the FPS will be. Hence, considering that the LBO and
FPS variations are related to the queue size, the reward for
the agent action was calculated only on the environment’s
next state observation. After each action, the INT metrics
were accordingly saved in their respective datasets to train
the TimeGAN in the later stage, as depicted in Fig. 2.

In this sense, the first agent was trained on the real setup
throughout the video transmission, afterwards, we trained a
second agent using only the synthetic data generated by the
TimeGAN. For such, we followed the same methodology
aforementioned, but instead of using the real setup, we fed
the agent with the synthetic INT metrics by the action taken,
thus simulating the real network behavior. In order to verify
whether such a model is suited for a real-world scenario,
we applied both pre-trained agents on the real setup again
and compared their results. For such, the DQN weights were
initialized from the respective models saved on the previous
training stage instead of randomly.

As can be observed in Fig. 7, the behavior of both agents
regarding the actions taken, the rewards received, and the train-
ing loss were similar, indicating that the TimeGAN can be used
as a simulator to train an agent that is intended for a real setup.
Such premise is corroborated by the results shown in Figs.
7(d) and 7(e), in which it is possible to notice that the FPS
and LBO obtained with each agent are very close. Table III
shows the quantitative assessments of the information depicted
in these figures, which describes the similarity between the
video client QoS metrics in accordance with the real setup-
based and TimeGAN-based agents, respectively.

Moreover, another important contribution of the proposed
method refers to the time needed to train each agent. While
the real setup-based agent trained on the fly throughout the
video streaming took 1 hour, the synthetic data generated by
TimeGan enabled us to reduce the training time to ≈3 minutes
using the same number of samples that we usually would
obtain by using a real setup. Such finding, in addition to the
results previously showed, contributes to the elaboration of
more precise RL agents in similar contexts, since the reduced
training time facilitates the hyperparameter search for the
deep learning models comprising them, and for the agent-
environment interaction settings.

V. LESSONS LEARNED

In this section, we share insights gleaned from our study,
which can benefit the community engaged in synthetic data
generation in the context of computer networks. While our
focus is on a video application within the context of PDPs, the
principles, and methodology we present can hold applicability
across various domains that exhibit similar behaviors and
metrics.

1) Dataset Characterization of Telemetry Metrics in a
Video Application Over PDPs: The data acquired through our
conducted experiments exhibited dynamic attributes. Conse-
quently, the time series data for each feature collected proved
to be highly intricate, posing a challenge for GAN model
learning. Furthermore, given that we collected two distinct
datasets—video and network metrics—the initial hurdle was
to determine the most rational approach for merging them
effectively. To address this, an analysis was imperative, neces-
sitating the selection of specific behaviors for filtration. This
choice held significant sway over the subsequent GAN training

0 500 1000 1500
Time steps (4 seconds)

Increase

Decrease
Ac

tio
ns Real setup-based

TimeGAN-based

(a) Actions

0 500 1000 1500
Epochs

0.5

1.0

1.5

2.0

Lo
ss

Real setup-based
TimeGAN-based

(b) Loss

0 200 400 600 800
Epochs

250

0

250

500

750

Ac
cu

m
ul

at
ed

 R
ew

ar
d Real setup-based

TimeGAN-based

(c) Reward

15 20 25 30 35
FPS

0.00

0.25

0.50

0.75

1.00

CD
F

Real setup-based
TimeGAN-based

(d) FPS

0 20 40 60 80
LBO

0.00

0.25

0.50

0.75

1.00

CD
F

Real setup-based agent
TimeGAN-based agent

(e) LBO

Fig. 7. Performance analysis graphs for RL trained in real setup vs. synthetic data.

TABLE III
COMPARISSON OF QOS FOR RL TRAINED IN REAL SETUP VS. SYNTHETIC

Agent type Proportion of frames
played at 18 FPS

Proportion of frames
played at 24 FPS

Proportion of frames
played at 30 FPS

LBO > 30
seconds

Real setup-based 0.48 0.05 0.47 0.46
TimeGan-based 0.49 0.02 0.48 0.47

QoS similarity 99% 97% 99% 99%

process. Hence, it underscores the criticality of conducting a
comprehensive dataset analysis and pre-processing assessment
before embarking on GAN training.

2) Hyperparameters Definition on Trainings: The opti-
mization of GANs, as a general practice, presents inherent
challenges that necessitate careful consideration in training
tasks. The determination of hyperparameter values is contin-
gent upon the specific dataset characteristics, involving key
choices such as batch size, the number of hidden dimensions,
and the length of windows employed as input to the model. It
is essential to underscore that there is no universally optimal
approach for setting hyperparameters, as the selection of
values is typically derived empirically. This process entails
a fine examination of the real dataset’s intrinsic attributes to
arrive at reasonable choices.

3) Mechanism to Select the Best Models: Evaluating
and selecting optimal models post-TimeGAN training poses
challenges. Traditional approaches like regression analysis are
unsuitable due to the dynamic nature of our real setup dataset.
Visual analyses lack automation for model selection. To ad-
dress this, we introduced a straightforward statistical metric
for ranking models trained with varied hyperparameters. Our
evaluation demonstrates its effectiveness in aligning data dis-
tributions with the real dataset, simplifying the comparison of
synthetic data without the need for additional time-consuming
machine learning models.

4) Application of synthetic data to train an RL model:
The results derived from the utilization of synthetic data for
training our RL model have yielded utility, underscoring the
effectiveness of synthetic data generated by TimeGAN within
the domain of computer networks. The similarity between the
RL agents is high. Also, the time required for RL model
training using synthetic data stands in stark contrast to that
of a real setup, with the former taking a sheer three minutes
as opposed to the latter’s one-hour duration for experimen-
tation. This methodology showcases a potential for broader
applicability across diverse contexts and machine learning
methodologies. These findings hold implications for the field,
emphasizing the feasibility of leveraging synthetic data instead

of real setups, thus facilitating accelerated experimentation and
model training while retaining efficacy

Our experience with TimeGAN-generated synthetic data is
significant for our future work. It boosts our confidence in
using synthetic data for various studies in PDPs. Additionally,
synthetic data can be a valuable resource for sharing our
research environments with other researchers and groups, pro-
moting collaboration and knowledge dissemination, in contrast
to traditional sharing of real setups. Section VI summarizes
our key findings and conclusions, providing insights into our
future research plans.

VI. CONCLUSIONS AND FUTURE WORK

This study presents the adoption of TimeGAN as a surrogate
simulator, substituting a real setup for a video application in
PDPs. We introduce a statistical metric for optimal model
selection during training and conduct a comprehensive evalua-
tion of the synthetic data generated by TimeGAN, comparing
its distribution with that of real features. Two RL agents
are trained, one with online training using a real setup and
the other with offline training utilizing synthetic data. Our
findings demonstrate the effectiveness of our statistical metric
in selecting superior models, even across models with differing
hyperparameters.

Moreover, we successfully showcase the feasibility of of-
fline RL training with synthetic data, producing results that are
comparable to their online-trained counterparts. The versatility
of TimeGAN is underscored, given its ability to create diverse,
balanced, and privacy-preserving datasets, thereby accelerating
model training. While the focus of our study revolves around
a video application, the model selection methodology we
propose, along with the insights we have unveiled, holds
applicability in other contexts and applications within the
computer network domain. This assertion is underpinned by
the data characteristics typical of this domain, which extend
the utility of our contributions beyond the specific scope of our
investigation. In our future research, we intend to delve into the
exploration of DoppelGANger as a framework for generating
synthetic time series data derived from our real setup.

REFERENCES

[1] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Advances in Neural Information Processing Systems, Z. Ghahramani,
M. Welling, C. Cortes, N. Lawrence, and K. Weinberger, Eds., vol. 27.
Curran Associates, Inc., 2014.

[2] H. Navidan, P. F. Moshiri, M. Nabati, R. Shahbazian, S. A. Ghorashi,
V. Shah-Mansouri, and D. Windridge, “Generative adversarial networks
(gans) in networking: A comprehensive survey & evaluation,” Computer
Networks, vol. 194, p. 108149, 2021.

[3] C. Gray-Preston, “Ai network applications,” Sep 2023. [Online].
Available: https://www.atis.org/tops-council/ai-network-applications/

[4] L. C. de Almeida, R. Pasquini, and F. L. Verdi, “Using machine learning
and in-band network telemetry for service metrics estimation,” in 2021
IEEE 10th International Conference on Cloud Networking (CloudNet),
2021, pp. 33–39.

[5] J. Shi, M. Sha, and X. Peng, “Adapting wireless mesh
network configuration from simulation to reality via deep
learning based domain adaptation,” in 18th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 21).
USENIX Association, Apr. 2021, pp. 887–901. [Online]. Available:
https://www.usenix.org/conference/nsdi21/presentation/shi

[6] J. Liu, M. Nogueira, J. Fernandes, and B. Kantarci, “Adversarial machine
learning: A multilayer review of the state-of-the-art and challenges
for wireless and mobile systems,” IEEE Communications Surveys &
Tutorials, vol. 24, no. 1, pp. 123–159, 2022.

[7] C. Zou, F. Yang, J. Song, and Z. Han, “Generative adversarial network
for wireless communication: Principle, application, and trends,” IEEE
Communications Magazine, pp. 1–7, 2023.

[8] M. Mirza and S. Osindero, “Conditional generative adversarial nets,”
2014.

[9] X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and
P. Abbeel, “Infogan: Interpretable representation learning by information
maximizing generative adversarial nets,” in Advances in Neural Informa-
tion Processing Systems, D. Lee, M. Sugiyama, U. Luxburg, I. Guyon,
and R. Garnett, Eds., vol. 29. Curran Associates, Inc., 2016.

[10] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image
translation using cycle-consistent adversarial networks,” 2020.

[11] J. Zhao, M. Mathieu, and Y. LeCun, “Energy-based generative adver-
sarial network,” 2017.

[12] C.-K. Lee, Y.-J. Cheon, and W.-Y. Hwang, “Least squares generative
adversarial networks-based anomaly detection,” IEEE Access, vol. 10,
pp. 26 920–26 930, 2022.

[13] L. Xu, M. Skoularidou, A. Cuesta-Infante, and K. Veeramachaneni,
“Modeling tabular data using conditional gan,” in Advances in Neural
Information Processing Systems, H. Wallach, H. Larochelle, A. Beygelz-
imer, F. d'Alché-Buc, E. Fox, and R. Garnett, Eds., vol. 32. Curran
Associates, Inc., 2019.

[14] Z. Lin, A. Jain, C. Wang, G. Fanti, and V. Sekar, “Using gans for
sharing networked time series data: Challenges, initial promise, and
open questions,” in Proceedings of the ACM Internet Measurement
Conference, ser. IMC ’20. New York, NY, USA: Association
for Computing Machinery, 2020, p. 464–483. [Online]. Available:
https://doi.org/10.1145/3419394.3423643

[15] J. Yoon, D. Jarrett, and M. van der Schaar, “Time-series generative
adversarial networks,” in Advances in Neural Information Processing
Systems, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, Eds., vol. 32. Curran Associates, Inc., 2019.

[16] M. H. Naveed, U. S. Hashmi, N. Tajved, N. Sultan, and A. Imran,
“Assessing deep generative models on time series network data,” IEEE
Access, vol. 10, pp. 64 601–64 617, 2022.

[17] Y. Hua, R. Li, Z. Zhao, H. Zhang, and X. Chen, “Gan-based deep dis-
tributional reinforcement learning for resource management in network
slicing,” in 2019 IEEE Global Communications Conference (GLOBE-
COM), 2019, pp. 1–6.

[18] Z. Xiong, Y. Zhang, D. Niyato, R. Deng, P. Wang, and L.-C. Wang,
“Deep reinforcement learning for mobile 5g and beyond: Fundamentals,
applications, and challenges,” IEEE Vehicular Technology Magazine,
vol. 14, no. 2, pp. 44–52, 2019.

[19] R. K. Gupta, S. Mahajan, and R. Misra, “Resource orchestration
in network slicing using gan-based distributional deep q-network for
industrial applications,” The Journal of Supercomputing, vol. 79, no. 5,
pp. 5109–5138, 2023.

[20] Q. Miao, Y. Lv, M. Huang, X. Wang, and F.-Y. Wang, “Parallel learning:
Overview and perspective for computational learning across syn2real and
sim2real,” IEEE/CAA Journal of Automatica Sinica, vol. 10, no. 3, pp.
603–631, 2023.

[21] Q. Liu, N. Choi, and T. Han, “Atlas: Automate online service
configuration in network slicing,” in Proceedings of the 18th
International Conference on Emerging Networking EXperiments and
Technologies, ser. CoNEXT ’22. New York, NY, USA: Association
for Computing Machinery, 2022, p. 140–155. [Online]. Available:
https://doi.org/10.1145/3555050.3569115

[22] F. Falahatraftar, S. Pierre, and S. Chamberland, “A conditional
generative adversarial network based approach for network slicing in
heterogeneous vehicular networks,” Telecom, vol. 2, no. 1, pp. 141–154,
2021. [Online]. Available: https://www.mdpi.com/2673-4001/2/1/9

[23] P. Mani, E. S. Gopi, H. Shekhar, and S. Chandra, “Generative adversarial
network and reinforcement learning to estimate channel coefficients,”
in Machine Learning, Deep Learning and Computational Intelligence
for Wireless Communication, E. S. Gopi, Ed. Singapore: Springer
Singapore, 2021, pp. 49–58.

[24] C. Qian, W. Yu, C. Lu, D. Griffith, and N. Golmie, “Toward generative
adversarial networks for the industrial internet of things,” IEEE Internet
of Things Journal, vol. 9, no. 19, pp. 19 147–19 159, 2022.

[25] E. Brophy, Z. Wang, Q. She, and T. Ward, “Generative adversarial
networks in time series: A systematic literature review,” ACM
Comput. Surv., vol. 55, no. 10, feb 2023. [Online]. Available:
https://doi.org/10.1145/3559540

[26] A. Borji, “Pros and cons of gan evaluation measures,” Computer Vision
and Image Understanding, vol. 179, pp. 41–65, 2019.

[27] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, pp. 529–533, 2015.

