Design and Implementation of a Slice as a Service
Architecture on the Edge Cloud with Resource
Constraints

1% Rodrigo Ferraz Azevedo
Department of Computer Science
Federal University of Sao Carlos

Sorocaba, Brazil
eu@rodrigoazevedo.com

Abstract—Cloud Network Slicing (CNS) is a concept that
describes a mechanism to provide computing, networking, and
storage as a virtual slice entity, enabling new approaches to
applications and structuring resources at the edge of the network.
In this paper, the architecture defined in the NECOS Project
is adopted, and the functions for creating CNS in resource-
constrained edge devices were designed and implemented. The
implementation was evaluated on Single Board Computers
(SBCs), using lightweight virtualization solutions (microservices)
and the results achieved show that it is possible to instantiate
CNSs on that hardware, however, also show some limitations of
multiple slice support on resource-constrained devices.

Keywords-cloud network slicing; microservices; single board
computer; cloud computing; edge computing; IoT.

I. INTRODUCTION

Slicing is not a new concept and has been mentioned in
several initiatives such as [1] and [4]. However, the emergence
of a new concept, called Cloud Network Slicing (CNS),
as defined in [2], involves not only the concept of slicing
resources of the network, but also computing and storage. This
concept also allowed a new proposal for the IoT architecture,
based on the isolated end-to-end (E2E) network abstraction,
in which an IoT device becomes an element of the distributed
network that hosts the CNS.

Additionally, in the context of CNS, it is not recommended
that edge devices be dedicated to a single slice, especially
in cases of lack of computational power, which implies, for
example, in the absence of resources such as GPUs, which
are specially used in image processing applications. Thus, it
is interesting that a single device hosts more than one slice in
specific cases [9].

One of the recent architectures that meet all these require-
ments is the one defined in the context of the NECOS Project
(Novel Enablers for Cloud Slicing) [2]. Thus, the possibility
of CNS instantiation in resource-constrained edge devices,
through NECOS components, is one of the approaches that
can make IoT services more secure, scalable, and reliable with
the efficient use of scarce resources.

In NECOS, an architecture for CNS was designed and a
minimalist implementation was developed in the context of

2" Luciano Bernardes de Paula
Federal Institute of Sao Paulo
Braganca Paulista, Brazil
Ibernardes @ifsp.edu.br

3™ Fabio Luciano Verdi
Department of Computer Science
Federal University of Sdo Carlos
Sorocaba, Brazil
verdi @ufscar.br

the project. However, the implementation did not consider
scenarios with low-resource equipment on the edge. The
slices created essentially contemplate the use of computational
devices with high processing power, typically physical servers
located in data centers. Since the architecture was not instan-
tiated in this type of scenario, its application in this project
required the adaptation of some functionalities for scenarios
focused on IoT.

The main purpose of this paper is to describe the design
and implementation of a minimalist system for creating CNS
in resource-constrained edge environments through NECOS
components. It is shown how the components of the NECOS
architecture was extended through microservices based on con-
tainers to support the resource-constrained hardware, whose
implementation was validated through a proof of concept using
a data collection service as the application, which can be used
as an example of an environmental monitoring system.

Single Board Computers (SBCs) were used, which refer
to computers that aggregate all electronic components on a
single printed circuit board. The performance evaluation of
the SBCs during the creation of one or more slices was
performed using monitoring software to capture the CPU and
memory consumption and temperature reached during this
process. Although the results achieved show the possibility
of supporting multiple slices in these resource-constrained
devices, some limitations were found.

The remainder of this article is organized as follows. Section
II details the implementation, section III describes the experi-
ments performed using real hardware and the results obtained.
Finally, the conclusions and suggestions for future work are
presented in Section IV.

II. IMPLEMENTATION

NECOS was projected to solve the limitations of cloud com-
puting providers, decentralizing the infrastructure and solving
the incompatibility of heterogeneous services. The project
introduces a new slice-as-a-service concept, Cloud Network
Slicing (CNS), which encompasses networking, storage, and
computing integrated into one slice, with optimized resource

allocation through algorithm-based high-level orchestration of
artificial intelligence [2].

The functional architecture of NECOS is described in Figure
1, in which are presented its main elements represented by 4
subgroups: Tenant, Slice Provider, Resource Marketplace, and
Resource Provider.

The tenant refers to any organization that needs slices for
your services, such as a Content Delivery Network (CDN), for
example, but the tenant can also act as a virtual infrastructure
provider, offering its idle resources to NECOS.

The Slice Provider allows the creation of slices, serving
requests from a tenant and building the end-to-end slice
requested, also managing its lifecycle, monitoring, changing,
or destroying a slice as needed. Additionally, has the responsi-
bility of deploying services to created slices and managed the
deployment and updating of software requested by the tenant.

The Resource Marketplace is a repository of information to
concerning the federated resources available to be sliced and
offered by providers and organized by specifications, such as
geographic location, financial cost, hardware, among others.
These repositories can be public or private in case of sharing
resources between partners.

The Resource Provider refers to organizations that make
available the physical and virtual resources for NECOS to
build the slice on demand and maintain the updated infor-
mation of resources offered.

This subgroup has 2 main components, namely: DC Slice
Controller (DCSC) and WAN Slice Controller (WSC), respon-
sible for deploying and configuring virtual environments on
devices and connection between slice parts, respectively.

However, the NECOS was projected to operate in big
servers located in data centers, then operate in IoT environ-
ments that need any adaptations as described below.

As NECOS depends on virtualization to support slice, was
proposed in this paper to adapt the NECOS architecture to
support multiple slices by changing the form of virtualization
and reorganization of some network edge components.

o
i
gg

Sica Service Stica
- Qrenestrator | Activator preioad
¥ o

Gient o Clowd

tartare i T
¥
Service Orchestrator | | Slies Spec
Adaptor Processor

(oas1) s023aN

19p|A0Id B2NIS

Sicac: Slica Builder |
o= o
Resource
@l Orchestrator
/ Slicing Orchestrator) |2/
Infr. & Mon. Abstraction &

Resource & VM gt | [Resource & VM Menitring | (1
Adagtars i
A i
> 3 s
m i \ 7 o

-~ Domain Mgm omain

Domain Mgm

Edge DC Net] [Central DC
—.EDDD e - S I:JD]IIID

Fig. 1: NECOS architecture [2].

The components were implemented following the NECOS
architectural specification highlighted in Figure 1. However,
the components of the Resource Provider (RP) subsystem

needed to be extended to interact with the containers located
in the SBCs.

The DCSC runs inside the provider and creates DC slices
with computing and storage resources, and is responsible for
instantiating a VIM (Virtual Infrastructure Manager) comply-
ing with the tenant’s specifications. The WSC is responsible
for the network part of the slice and interconnecting DC slices.
For details about NECOS architecture, see [2].

container 1 container 2
Hardware [virtual interface 1] || [virual interface 2|
board
I

virtual bridge 1 bridge 2
switch

[NICs

L tunnel tunnel

A N

Fig. 2: Software architecture at SBC.

The necessary extension occurred in the DCSC and WSC
component algorithms to support the instantiation of con-
tainers directly in SBCs using the architecture highlighted
in Figure 2. The DCSC and WSC were also moved to new
equipment as described below.

Although NECOS allows the entire edge structure to be
instantiated virtually and on the same hardware as the final
system, in the IoT context this scenario is not recommended,
as such a situation would consume resources that are already
scarce by nature. Thus, in this work, a new hardware layer was
considered, in the form of a gateway, to receive the NECOS
management components at the edge. Such an approach is
common for IoT scenarios and is used in similar works [9].

The SBCs chosen for the experiments were: Dragonboard
410c (ARM processor with 1.2 GHz, memory 1 GB, GPU,
and Ubuntu Core), Raspberry Pi 3 (ARM processor with 1.2
GHz, memory 1 GB, GPU, and Ubuntu Core), Raspberry Pi
4 (processor 1.5 GHz ARM, 4 GB memory and GPU, and
Ubuntu Core) and NVIDIA Jetson Nano (1.43 GHz ARM
processor, 4 GB memory, GPU, and Ubuntu). These devices
were chosen because they are widely used in the prototyping
of IoT devices [5].

In this sense, the gateway received the three components
described below, which interact with the SBCs via SSH.

o DCSC: responsible for isolating the network of each
CNS through virtual network interfaces on the device
and instantiating Docker containers associated with the
appropriate CNSs;

e« WSC: responsible for connecting the distributed slice
parts, either in edge or cloud, through GRE tunneling;

o Slice Agent (SA): responsible for updating the Slice

Broker with the list of available physical devices to
compose the CNS.

However, given that some edge computing hardware tends
to have high acquisition and maintenance costs, it is also
expected that they will support multiple slices. There was
also a need to replace typical NECOS virtualization solutions,
virtual machines, with lightweight virtualization considered in
this project: containers and unikernel [6].

However, limitations were encountered during the imple-
mentation and deployment of unikernel-based solutions on the
selected devices. This solution was not compatible with ARM
devices, not allowing direct compilation on these, making its
orchestration unfeasible. Therefore, such technology should be
analyzed in the future, when solutions based on unikernel are
more mature and applicable to this hardware.

To provide connectivity between the SBCs, the WSC was
adapted to connect Docker instances in the edge with the slice
parts through virtual tunneling using the GRE protocol and,
for this functionality of tunneling, the Open vSwitch [8] was
installed in each of the SBCs to manage the tunnels.

III. PERFORMANCE EVALUATION

The performance during the creation of one or more CNSs
were captured using the Netdata monitoring tool [7], obtaining
the CPU, memory consumption, and temperature achieved
during this process. The results obtained confirmed the hypoth-
esis of supporting multiple slices in these resource-constrained
devices, with some limitations.

The results were divided into three aspects for analysis, as
follows:

o Network: refers to the time in which the DCSC takes to

slice the local network into subnets to isolate the CNSs;

o Container: refers to the time in which the DCSC takes to

instantiate the CNS containers in the SBCs;

o WAN: refers to the time the WSC takes to connect the

slice part to the CNS.

The benchmarks were performed by instantiating the CNS
and then deleting it after its creation. The results are shown
in Figures 3, 4, and 5. Values are related to CPU, memory
consumption, and temperature of operating system processes
for managing Docker containers (Network and Container) and
Open vSwitch [8] (WAN).

In the first evaluation, the average CPU consumption in
different equipment was analyzed. For this, the amount of
CNSs and VDUs [3] in each slice were varied as follows:
1 CNS with 1 VDU (Figure 3a) until 1 CNS with 3 VDUs
(Figure 3b), 2 CNSs with 1 VDU (Figure 3c) until 2 CNSs
with 3 VDUs (Figure 3d) in each SBC. The process was
repeated 5 times for each scenario.

The SBCs with fewer resources, i.e., Raspberry Pi 3 and
Dragonboard, did not support a higher number of repetitions
in a short period which resulted in the loss of communication
after the CPU usage was drained in the devices.

The maximum number of 2 CNSs with 3 VDUs was
achieved in the Dragonboard and Raspberry Pi 3. That hard-
ware was not able to support more CNSs with more VDUs,

something noticeable in Figures 3b, and 3d where it is possible
to observe the high CPU consumption.

On one hand, this behavior was already expected in hard-
wares with few resources for managing virtual environments.
On the other hand, it is possible to observe that the Raspberry
Pi 4 consumed less CPU in practically all scenarios, something
that can be justified by its 1.5 GHz frequency, well above the
1.2 GHz of the two more restrictive SBCs and 1.43 GHz of
the Jetson Nano. It was also found that the Raspberry Pi 3 had
higher CPU consumption, although Dragonboard increased its
consumption considerably as new VDUs were added.

Regarding memory consumption, as shown in Figure 4, it is
possible to observe that Dragonboard consumed more memory
when instantiating the CNSs, but even so the consumption
remained low compared to the amount of memory available
in each SBC. The Raspberry Pi 4 was the SBC consumed
the least memory. The Jetson Nano used the resource is
comparatively above the expected if compared to its amount
of memory available with other SBCs.

Regarding temperature, it is known that this characteristic is
a limiting factor for this type of hardware due to the use of sen-
sitive components. Both, the Rasberry Pi and the Dragonboard
quote in their documentation that up to 70 degrees Celsius is
the ideal operating temperature. The Jetson Nano presents in
its official documentation the limit of 80 degrees Celsius for
perfect operation. Then, as shown in Figure 5, it is possible to
observe that these limits were practically reached, limiting the
number of CNSs instantiated and operating in these devices.

The average time of CNS instantiation in each SBC was
also analyzed as shown in Figure 6. It is possible to notice the
fast response of Jetson Nano, which justifies its higher CPU
consumption when compared to the Raspberry Pi 4. Thus,
the Jetson Nano is a good option for use in contexts that
require instantiation or fast retrieval of virtualized elements
at the edge of the network. The inferior hardware of the other
SBCs reflected negatively on their times.

Jetson Nano was the SBC that performed best when instan-
tiating each CNS in less time, followed by Raspberry Pi 4,
Raspberry Pi 3, and lastly Dragonboard, which may justify its
non-standard memory usage.

From the data presented, it is possible to confirm the support
of these SBCs to the CNS. However, the limited hardware does
not allow for the traditional NECOS approach that foresees
devices without such restrictions and with constant connection,
as in data centers. It is also verified that the minimalist
structure of this hardware makes them susceptible to factors
already controlled in other environments, such as the impact of
ambient temperature and device operation in the applications
it supports.

IV. CONCLUSION AND FUTURE WORK

In this paper, a proposal for a minimalist system using
the components of the NECOS project for resource slic-
ing and orchestration of IoT devices operating at the edge
was presented. NECOS components were implemented and
evaluated to support CNS creation in resource-constrained

m DragonBoard410c M RaspberryPi3 mRaspberryPi4 m JetsonNano m DragonBoard410c M RaspberryPi3 W RaspberryPi4 = JetsonNano

100 140
_ % g 120
g e 3
2 70 2 100
g 60 % 30
= 50
& 40 T§n’ 60
i) 41
f=4 B
g 30 3 40
S 20 [
10
° mHEN mil .
network Container network Container
1CNS1VDU 1CNS1VDU
(a) 1 CNS with 1 VDU (a) 1 CNS with 1 VDU
100 140
% g 120
g w 8
Z 70 2 100
z 60 g 80
S 5 2
& < 60
& 40 4
= 2
g 30 3 40
= ©
o 20 an
a [20
0 0
network Container network Container
1 CNS3VDUs 1 CNS3VDUs
(b) 1 CNS with 3 VDUs (b) 1 CNS with 3 VDUs
100 140
_ g 120
< 80 3
g 70 2 100
g 60 g 80
= 50 §
o ~ 60
g 30 3 40
= ©
" |
0 0
network Container network Container
2 CNSs 1VDU 2 CNSs1VDU
(c) 2 CNSs with 1 VDU (c) 2 CNSs with 1 VDU
100 140
_ g 120
T 80 3
g 70 2 100
g © 2w
= 50 §
o ~ 60
g 30 2 40
= ©
< o g 20
10 =
0 0
network Container network Container
2 CNSs 3 VDUs 2 CNSs 3 VDUs
(d) 2 CNSs with 3 VDUs (d) 2 CNSs with 3 VDUs

Fig. 3: Average CPU usage during the creation of one and two Fig. 4: Comparison of average memory consumption when
CNSs varying the number of VDUs per CNS. creating 1 and 2 CNSs with up to 3 VDUs per CNS.

W DragonBoard410c M RaspberryPi3 W RaspberryPi4 JetsonNano

70

60

0 III III III

network

Now B O
© © o o

Celsius Degrees (Temperature)
.
o

Container
1CNS1VDU

(a) 1 CNS with 1 VDU
70

60

50
40
30
20
10

0

network

Celsius Degrees (Temperature)

Container
1CNS3VDUs

(b) 1 CNS with 3 VDUs
70

60

50
40
30
20
10

0

network

Celsius Degrees (Temperature)

Container
2CNSs1VDU

(c) 2 CNSs with 1 VDU

60
50
40
30
20
10
0

network

Celsius Degrees (Temperature)

Container
2 CNSs 3 VDUs

(d) 2 CNSs with 3 VDUs

Fig. 5: Comparison of the temperature reached during the
creation of 1 and 2 CNSs with up to 3 VDUs per CNS.

m DragonBoard410c JetsonNano

120

M RaspberryPi3 m RaspberryPi4

100

80
6361
60
4442
10 32 31
2653 2725 18 292728,
: II B i 15 I IIl
0

1CNS1VDU 1CNS2VDUs 1CNS3VDUs 2CNSs1VDU 2CNSs2VDUs 2CNSs3VDUs

Time (Seconds)

N

Fig. 6: Average CNS instantiation time per SBC.

edge environments using lightweight virtualization through
containers. A proof of concept was implemented to validate
the new features using real hardware.

The results obtained confirmed the hypothesis of supporting
slices in these devices, however, there were limitations in the
number of slices instantiated in the same hardware due to
resource constraints in IoT devices. Therefore, the presented
solution can meet solutions that demand exclusive hardware,
but in a limited way in cases where the hardware needs to be
shared among tenants.

The analyzes performed in this work serve as a basic
foundation for further studies on SBC devices. We used a
lightweight virtualization solution (microservices), but even
so, instantiating multiple slices was limited, given the need
for isolation required by the conceptual nature of slices. In
this sense, future investigations should move towards other
lighter solutions such as unikernel and FaaS.

ACKNOWLEDGMENT

Work supported by the H2020 EU-Brazil collaborative call,
funded by the European Commission and the Brazilian Min-
istry of Science, Technology, Innovation, and Communication
(MCTIC) through CTIC/RNP.

REFERENCES

[1] N. Alliance. Ngmn 5g white paper. Next generation mobile Networks,
white paper, pages 1-125, 2015.

[2] S. Clayman, A. Neto, F. Verdi, S. Correa, S. Sampaio, I. Sakelariou,
L. Mamatas, R. Pasquini, K. Cardoso, F. Tusa, C. Rothenberg, and
J. Serrat. The necos approach to end-to-end cloud-network slicing as
a service. I[EEE Communications Magazine, 59(3):91-97, 2021.

[3] A. Esmaeily, K. Kralevska, and D. Gligoroski. A cloud-based sdn/nfv
testbed for end-to-end network slicing in 4g/5g. In 2020 6th IEEE
Conference on Network Softwarization (NetSoft), pages 29-35, 2020.

[4] H. Flinck, C. Sartori, A. Andrianov, C. Mannweiler, and N. Sprecher.
Network slicing management and orchestration. Internet Engineering
Task Force, Tech. Rep, 2017.

[5] S.J. Johnston, M. Apetroaie-Cristea, M. Scott, and S. J. Cox. Applicabil-
ity of commodity, low cost, single board computers for internet of things
devices. In 2016 IEEE 3rd World Forum on Internet of Things (WF-IoT),
pages 141-146, 2016.

[6] A. Madhavapeddy and D. J. Scott. Unikernels: the rise of the virtual
library operating system. Communications of the ACM, 57(1):61-69,
2014.

[7] 1. Netdata. Github - netdata/netdata: Real-time performance monitoring,
done right! https://www.netdata.cloud. https://github.com/netdata/netdata,
2021. Accessed: 2021-02-02.

[8] OpenvSwitch. Open vswitch.
Accessed: 2021-02-02.

[9] F. Xhafa, B. Kilic, and P. Krause. Evaluation of iot stream processing at
edge computing layer for semantic data enrichment. Future Generation
Computer Systems, 105:730-736, 2020.

https://www.openvswitch.org/, 2021.

