
1

InFaRR: In-network Fast ReRouting
Fábio L. Verdi, UFSCar, Gustavo V. Luz, UFSCar

Abstract—InFaRR (In-network Fast ReRouting) is an algo-
rithm for fast rerouting in programmable data planes. Imple-
mented in P4, InFaRR is free of additional headers and network
state heartbeats. InFaRR has four essential features not jointly
found in other recovery mechanisms: Loop prevention, Pushback,
Recognition and Restoration and Return to the main route. Tests
in standard Fat-Tree and AB Fat-Tree topologies with failures
in different scenarios showed positive results when compared to
state-of-the-art algorithms in the literature. In scenarios in which
the other algorithms were able to recover, InFaRR presented
fewer hops to bypass the failure when the Pushback, Loop
Prevention and Recognition and Restoration mechanisms were
used. In scenarios with multiple failures, InFaRR successfully
rerouted where the others algorithms in some cases looped. The
mechanism for returning to the main route allows to verify
failures in remote links, making it possible to return to the
main route without intervention from the control plane. Several
evaluations were done comparing the results of InFaRR with the
state-of-the art mechanisms, showing the capability of our fast
rerouting algorithm in dealing with failures at the line-rate.

Index Terms—Data Center Networks, Dataplane Programma-
bility, Fault Management, Software-Defined Networking, Fast
Rerouting.

I. INTRODUCTION

Datacenters increasingly centralize the processing of appli-
cations that require real-time responses, with a high degree
of interactivity or that are sensitive to latency variation.
Such applications are present today in telemedicine services,
autonomous vehicles, AR/XR, gaming, among others. To meet
these characteristics of current applications, many of them are
available in the cloud as they have fault tolerance mechanisms
since their conception. Examples of these mechanisms include
the usage of redundant equipment and multiple paths as well
as algorithms that allow the choice of the main routing plan,
packet prioritization and recovery approaches.

Fast rerouting solutions are characterized by the local ability
of the switch to circumvent failures without the help of control
plane and without dependence on signaling from other external
elements, such as announcements of new routes, heartbeat,
keep alives or overflow timeout of a dynamic routing protocol
session [1].

Rerouting solutions supported by centralized control plane
in Software Defined Networking (SDN) have a slower re-
covery mechanism when compared to fast rerouting in the
data plane [1]. The centralized control plane has a delay to
start the recovery, as it is necessary to detect the failure in
a remote equipment through a pooling process, or to receive
the failure notification, which is contrary to the fast rerouting
proposal [2]. However, the recovery mechanisms executed in
the data plane provide fast rerouting, improving the agility and
speed of recovery during periods of failure, as there is no need
to consult the control plane or dependence on some type of
external agent signaling [3].

In this context, InFaRR benefits from the programmable
data plane and proposes a fast rerouting algorithm capa-
ble of bypassing up to three simultaneous failures in Fat-
Tree networks. InFaRR was implemented in the P4 language
(Programming Protocol-Independent Packet Processors) and
compared with the main solutions currently found in the
literature [4]. InFaRR has four essential features not jointly
found in other mechanisms: Prevention of Loops in the net-
work, Pushback, Recognition and Restoration Mechanism and
Return to the Main Route [5], [6].

The loop control proposed in InFaRR acts before the tradi-
tional TTL (Time-To-Live), preventing packets from circulating
on the network. The Pushback Mechanism, also found in [7],
returns packets to the previous switch in case there are no
alternative routes from the point of failure. The Recognition
and Restoration enables the discovery of which routes are
at fault, thus avoiding sending further traffic through them.
Finally, Return to the Main Route is a mechanism added to
InFaRR capable of detecting if the original route has recovered
from the failure and then resume sending back the affected
flows through its primary route.

InFaRR was evaluated using the datacenter Standard Fat-
Tree and AB Fat-Tree network topologies with k=4 in an
environment emulated in Mininet. Different failure scenarios
were exercised by comparing the proposed algorithm with
related works which were minimally adapted to work in P4 [8],
[9]. The algorithms were compared based on the evaluation of
the success of recovery in the face of failures, configuration
method, recovery scope, recovery domain, packet loss occur-
rence during the recovery process, packet transmission time
and number of hops on the network after recovery from the
failure.

InFaRR was firstly presented in [10] showing its main
features and preliminary results. In this paper, InFaRR was
extended and evaluated not only in Fat-Tree topologies but also
in AB Fat-Tree to support up to three failures simultaneously.
We also defined the taxonomy, the Finite State Machine (FSM)
and compared it with other related and similar works.

Therefore, the main contributions of this work are: 1)
design and implementation of a fast rerouting algorithm for
programmable networks, with the ability to recover from up to
three failures in Fat-Tree networks; 2) definition of a taxonomy
for InFarr which may be useful for other similar works; 3)
execution of a proof of concept in a virtual environment
from the perspective of Standard Fat-Tree and AB Fat-Tree
topologies for analysis, interpretation and comparison with the
state-of-the-art; 4) availability of the dataset collected during
the proof of concept for the purpose of study replication and
future comparisons.

This paper is organized as follows: next section presents
some fundamental concepts about resilience in computer net-

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3283459

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE SAO CARLOS. Downloaded on June 10,2023 at 23:16:34 UTC from IEEE Xplore. Restrictions apply.

2

works. Section III is dedicated to the related works. Section IV
details InFaRR, the taxonomy and the FSM of the algorithm.
Section V depicts the evaluation and the comparison with
the state-of-the-art. Section VI shortly summarizes the lessons
learned and limitations of InFaRR. Finally, Sec. VII concludes
the paper.

II. RESILIENCE IN COMPUTER NETWORKS

Networks that need high levels of availability must be
planned in order to circumvent possible ruptures in any of
their elements and keep specific level of Quality of Service
(QoS). In programmable networks, there is the possibility
of building recovery policies based on each type of flow or
clients, guaranteeing greater flexibility for different levels of
service present in the network.

The Telecommunication Standardization Sector (ITU-T) has
defined parameters related to IP network performance that
quantify the required levels of QoS for the different classes of
existing services, which are : IP Packet Transfer Delay (IPTD),
IP Delay Variation (IPDV), IP Packet Loss Ratio (IPLR) and
IP packet Error Ratio (IPER) [11], [12]. The requirements
for each type of traffic can be seen in Table I and will be a
reference for analysis and interpretation of the results of the
algorithms evaluated in this work.

Service Type of application IPTD IPDV IPLR IPER
Class 0 Real-time, 100 ms 50 ms 1 x 10-3 1 x 10-4

jitter-sensitive,
highly interactive

Class 1 Real-time, 400 ms 50 ms 1 x 10-3 1 x 10-4

jitter-sensitive,
interactive

Class 2 Transactions Data, 100 ms unfixed 1 x 10-3 1 x 10-4

highly interactive
Class 3 Transactions Data, 400 ms unfixed 1 x 10-3 1 x 10-4

interactive
Class 4 Tolerating 1000 ms unfixed 1 x 10-3 1 x 10-4

low loss
Class 5 Typical applications unfixed unfixed unfixed unfixed

of IP networks

TABLE I: Class of services defined by ITU-T.

The first four classes of services (0 to 3) described in Table
I are sensitive to transmission times (IPTD) and require end-
to-end transmission paths of less than half of a second (400
ms), as are related to applications that require real-time or
interactive communication. Also, classes 0 and 1 require a
latency variation (IPDV) of less than 50 ms [13] to work
properly. Therefore, a recovery mechanism in order to meet
these described requirements must provide a rerouting within
the IPDV limit, and the new contingency path must not exceed
the required IPTD limit.

Dynamic routing protocols are among the tools used to
provide fault tolerance and generate network reliability, so
that when a link fails, the network can converge to another
path. Traditional and widely used protocols, such as Border
Gateway Protocol (BGP) or Open Shortest Part First (OSPF),
can take tens of seconds to converge, while the requirements of
real-time classes of services require this convergence to occur
significantly in less time ([14]), therefore they do not meet the
established QoS levels for computer networks.

Traditionally, in programmable networks, when the link
fails, the switch needs to detect the failure and communicate
the control plane to reconfigure the forwarding paths of the
affected flows. This convergence process can take about 100ms
if there is still connectivity between the remote switch and
the control plane ([15]). This work will present an alternative
for rerouting in the data plane in order to meet the QoS
requirements for classes of service which are constrained to
IPTD, IPDV and packet loss.

1) Recovery methods: Recovery methods can be classified
by various criteria [16]. Four of these criteria are extremely
relevant. The first is associated with the backup path con-
figuration method, which can be pre-configured or reactive.
The pre-configured method in SDN networks enables faster
recovery, as the recovery strategy is already pre-defined to be
used when necessary in the data plane, as a secondary routing
table. In the reactive method, a recovery process is started
in the control plane as soon as a failure is encountered. All
routing table reconstruction processing is done by the control
plane and distributed to the data plane.

The second criterion is associated with the scope of the
recovery, which can be global, local or segmented. In the
global policy, protection is offered to all elements of the
path (end-to-end). Local policy ensures that there is a way
to punctually bypass the faulty link. In this scenario, traffic
will only be forwarded from the point where the fault was
found. Finally, the segment recovery policy offers protection
to specific segments involving switches and links, and will
provide a punctual bypass to the problem segment [16].

In Figure 1, the main path between switch 1 and 5 is
represented by the links in blue, passing through equipment 2,
3 and 4. The policy with global recovery scope, represented
by the links in green, provides protection from failure of any
switches and links that compose the main path. The recovery
scope per segment, represented by the links in red, together
with switches 7 and 8, provide failover protection for switch 3
and links A and B. Finally, the local protection scope, provides
protection only for link A through the black links passing
through switch 6.

Fig. 1: Recovery scopes.

The third criterion refers to how the resources are used
to provide recovery, which can be classified as dedicated
or shared. In architectures that use dedicated resources, also
known as the 1+1 approach, all elements that require a
recovery method are duplicated. The shared approach, in turn,
allows multiple elements to use the same backup resource,
assuming (statistically), that there will not be more than

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3283459

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE SAO CARLOS. Downloaded on June 10,2023 at 23:16:34 UTC from IEEE Xplore. Restrictions apply.

3

one failed element requiring the use of this backup resource
simultaneously.

The last criterion deals with the characteristics related to
the operation and recovery domain. The operation domain
attribute can be observed in SDN networks by the number of
existing control planes. The more operation domains, the more
complex the process of synchronism between the different
control planes [17] will be. If we look at the Standard Fat-
Tree and AB Fat-Tree networks, object of this study, we can
see a PoD (Point of Delivery) as a recovery domain, depending
if the rerouting process occurs exclusively in the same PoD or
if there is a dependency from switches of other PoDs. InFaRR
adopts a pre-configured recovery method that classifies it as
a fast rerouting algorithm. The recovery scope adopted in
InFaRR is per segment. The operation domain will be internal
to PoD, bringing independence to the rerouting process, pre-
venting packets from traveling through unnecessary equipment
at the time of failure recovery.

2) Recovery process: Initially, it is important to define the
basic concept regarding the existing routing table types, in
which the “main routing table” refers to the primary process
used by the switch to define the output port for forwarding
packets, using the destination IP address as key to lookup.
The “secondary routing table”, or backup, will only be used
if the port suggested by the main routing table is in trouble.

Figure 2 describes the existing steps related to the failure
detection and recovery process. In the initial step T0, the
network is functioning with traffic sent through an optimal
forwarding path, determined by the control plane. The failure
detection, which happens in step T1, defines the moment
when the port went to the down state, starting the recovery
process in step T2. In step T3, the network operates through
an alternative path until the control mechanism can re-establish
connectivity, which happens in step T4. The trigger to change
state to up from the previous step, starts the process of
updating the routing tables (step T5), returning to the initial
forwarding path in T6.

Fig. 2: Failure detection and recovery phases.

The control mechanism that occurs in steps T1 and T4
are not the scope of this work. In general terms, it means
that our solution is independent of how the switch detects the
failure of a given link. We assume that the hardware is capable
of detecting a physical failure in the interfaces. However,
changing the port state to down or up is the trigger to start
the recovery algorithm. For evaluation purposes in this paper,
the port state was arbitrarily imposed in the failure simulation
and respective recovery process.

One of InFaRR’s goals is to reduce the recovery time, which
is the sum of the duration of steps T1 and T2. In this range,

from T1 to T2, it is conjectured that packet loss may occur, so
the shorter this time, the faster the convergence process [16].
Since in step T1, the link with status DOWN is detected, it
is important to evaluate the duration of step T2, given that
it may be directly influenced by the convergence algorithm
used. Performing measurements related to the performance
of the network during normal operation at the time T0, and
comparing them with the operation at the time of contingency
T3, will make it possible to evaluate the effectiveness of
the contingency algorithm. It is conjectured that even in the
process of convergence, performance measurements remain
within the limits presented in Table I.

The network conditions at the moment of contingency will
be equivalent or worse if compared to the normal operating
state, assuming that the control plane offered the optimal
route to normal operation in step T0. Therefore, the network
conditions will be equivalent if the contingency structure
has the same conditions of use and network latency, found
in topologies with dedicated protection (1+1). In protection
scenarios with shared resources, the contingent forwarding
plan will be subject to the use of segments with greater
occupancy, packet loss, greater latency or paths with greater
number of hops that will directly impact the performance
parameters of the contingent flow. For the purpose of this
study, we will consider that the links that will be part of
the redundancy process will be dedicated and will present the
same network conditions (latency and utilization), so it will
not be necessary to consider any process of prioritization or
packet discard in this study.

III. RELATED WORKS

This section is divided into two parts: Subsection III-A
presents the main works in the literature related to rerout-
ing that inspired the creation of the InFaRR algorithm; and
Subsection III-B will specifically deal with works related to
rerouting proposals which are free of additional headers that
we will use to compare with InFaRR in Section V.

A. Rerouting solutions inspiration for InFaRR

As already mentioned, dynamic routing protocols are among
the tools used to provide fault tolerance and ensure network
reliability. However, protocols such as BGP or OSPF can take
tens of seconds to converge.

F10 [18] highlights the need for a physical and logical
approach to implement a highly resilient environment. The
discussion about points of failure and convergence process
suggests an adaptation of the Fat-Tree topology, so that we
move to a connection scheme between devices called AB
Fat-Tree. The logical proposal of these authors contemplates
a local protection scope and requires that the rerouting be
executed in another PoD in a way that does not have an
independent recovery domain. Despite its renowned scientific
relevance, and serving as inspiration for this work, F10 pro-
posal is conditioned to a reformulation of the connections
between the equipment, decharacterizing the standard Fat-Tree
topology as well as requires a process of announcements to

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3283459

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE SAO CARLOS. Downloaded on June 10,2023 at 23:16:34 UTC from IEEE Xplore. Restrictions apply.

4

all its neighbors in the event of failures. Finally, there is no
P4 implementation for F10.

The P4-Protect algorithm [19], implemented in the P4
language, presents a 1+1 global recovery scope solution for
IP networks. The algorithm requires a topology with two
disjoint paths to the destination. The first switch in the network
is responsible for forwarding a packet to each path (clone),
adding a control header to the packet. The last switch removes
the header and forwards the first received packet to the desti-
nation, discarding the cloned packet. Although this algorithm
does not perform rerouting, it offers an interesting layer of
resilience and presents excellent results in reducing jitter, but
still requires studies in hierarchical datacenter topologies such
as Fat-Tree.

Derived from Graph Theory, Depth-First Search (DFS) and
Breadth-First Search (BFS) algorithms enable fault recovery
even without having a predefined secondary routing table [20].
When the packet cannot be forwarded to the destination port,
the mechanism starts the search process for a viable path,
systematically forwarding the packet according to the chosen
algorithm. Implementing the DFS or BFS algorithms in P4
adds a header to the structure of packets, so that switches can
track where the packet has gone. However, although there is no
loop, the absence of a Recognition and Restoration Mechanism
makes all packets go a long way to the destination [21].

RoLPS [22] proposes Loop-free alternates as a mechanism
to detect loops in the network and presents a solution for
FRR in the dataplane. The paper is very related to ours and
has similar ideas, as for example, the point of local repair
(PLR) concept defined in RoLPS is similar to our Pivot
switch (explained in the next section). However, there are
some key differences in which we believe make our approach
simpler. The RoLPS needs to have a few bits in the header
to implement what they call Advanced Loop Detection (ALD)
so that packets are dropped when rerouted a third time. Our
approach does not need any extra bits in the header. They
also need to support tunneling for certain recovery scenarios.
Our approach does not depend on tunneling to recovery, which
may bring extra cost/overhead to the solution. Finally, InFaRR
uses a Recognition and Restoration Mechanism that enables
the switch to learn that a given path is no longer useful for
the flow and proceeds to the rerouting plan or Pushback.

The comprehensive survey on fast data plane rerouting
mechanisms by [14] presents the most current study on the
different approaches to implementing these mechanisms. A
chapter dedicated to SDN is included, in which strategies in
Openflow environments and in programmable data planes (P4)
are discussed. The survey highlights the implementation of the
algorithm Data-Driven Connectivity (DDC) in P4 that uses
additional headers to store the number of failures along the
path taken by the packet, introducing the concept of link -
reversal [7]. Such an approach generates a signaling overhead
in the packet.

The P4Neighbor [23] and P4Resilience [24] are implemen-
tations in the P4 language of fast rerouting algorithms and
use additional headers in the packet structure to encapsulate
backup path information; thus they optimize rerouting by the
switch, since the rerouting proposal is contained in the packet

header. The P4Neighbor algorithm, when unable to forward
a packet over a faulty link, adds a recovery header to the
packet and recirculates it within the same switch, so that the
same packet is rerouted through a working port. The recovery
mechanism is predefined, so the multipath backup is calculated
by the control plane [23]. P4Resilience has the differential
of guaranteeing the creation of loop-free paths; however, the
multiple backup paths need to be stored in the data plane and
have linear growth in relation to the number of streams [24].

PURR [8], implemented in P4, presents a solution with two
queries to match-action tables: the first query performed to the
main routing table, returns the output port through which the
packet must be forwarded. The second query uses the output
port and the status array of the switch ports as the search
key, and provides a port with the status active as the output
port. This proposal optimizes the size of the second table but
makes it impossible to handle rerouting by flows or other type
of segregation.

B. Rerouting algorithms that are free of additional headers

The main works in the literature which do not require net-
work status announcements and do not use additional headers1

in the packet structure were selected as directly related works.
Such works were adapted to the P4 language and used for
comparison purposes with the InFaRR algorithm.

The first fast rerouting algorithm, called Static, relies on
pre-configured routes and proposes a secondary routing table
to provide a bypass for failures when the main routing table is
not able to forward the packets. The second algorithm, called
Rotor, implements a target search mechanism using the active
ports of the switch sequentially.

We also selected a traditional approach to programmable
networks running in the control plane to prove the efficiency
and benefits of fast rerouting.

1) Static rerouting: In the work entitled “Scalability and
Resiliency of Static Routing” [25], an extensive study is
presented on the feasibility of implementing fault tolerance
through the use of static routing and its variations. The most
basic approach of static routing as a recovery mechanism
consists of providing a main routing table and a secondary
routing table to be used in the event of failures, both previously
configured by the control plane. This approach offers local
recovery scope and, when implemented in the core switch,
needs a convergence domain from another PoD to find an
alternate path to its destination.

All routing and rerouting actions are performed exclusively
in the data plane through queries to previously defined routing
tables. As soon as the packet passes through the switch’s
Ingress phase, the main routing table is consulted. If there
is a match, an output port is returned to forward the packet,
otherwise the packet is dropped. If the outgoing port is set to
status ”OK”2, the packet is forwarded to Egress. If the port
is in loop status or down, the next step will be to consult
the secondary routing table, where a new output port will

1Extra headers should always be avoided since they cause extra overhead
and fragmentation.

2”OK” here means that the port is physically UP and not in loop.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3283459

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE SAO CARLOS. Downloaded on June 10,2023 at 23:16:34 UTC from IEEE Xplore. Restrictions apply.

5

be defined or the Drop is executed if there is no predefined
secondary route. Finally, a new status check of the outgoing
port (IF 2) is performed. If it has the status ”OK”, the packet
is forwarded to Egress, otherwise the packet is dropped.

2) Rotor rerouting: The work presented in [9] proposes
a programmable data plane implementation without the need
to use additional headers. The Rotor algorithm performs a
lookup in the main routing table and, once the outgoing
port is in trouble, the packet will be forwarded to the next
available active port. The recovery scope is local, and its
implementation on the core devices require the packet to be
routed through another PoD. The configuration method was
previously defined, since there are no queries to the control
plane. Although there is no preconfigured backup routing
table, the algorithm takes responsibility for finding an alternate
path to the destination [26].

The workflow of the Rotor algorithm starts with the verifica-
tion of the type of packet that will be processed. The packets,
when processed for the first time, are classified as normal and
proceed to the traditional lookup of the main routing table and
check the status of the output port. When ”Ok”, the packet
is sent to Egress; otherwise the packet is recirculated inside
the switch, passing through Ingress again; however, now the
packet will be flagged as “recirculated” and will be forwarded
to the next port (“Output port + 1”). Once again, the status
of the output port is checked, repeating the process until an
output port with status ”Ok” is found.

3) Control plane: In a centralized control plane architec-
ture, it is possible to provide global recovery scope, reactive
configuration mechanism, and independent operating domain.
One of the tasks of the control plane is to constantly assess
the network conditions and, whenever necessary, update the
routing tables of switches. The evaluation process may involve
recurrent queries (pooling) of the control plane to each of the
network equipment, causing considerable use of the network
for its own monitoring. The update cycle interval is decisive
for the management bandwidth consumption and for the
problem detection time, and can become a big challenge [2].

It is up to the Control Plane to make a query to a routing
table to check the status of the output port. However, there
is no pre-programmed action in the data plane for rerouting.
The Control Plane needs to update the routing table with viable
routes whenever necessary. The process of detecting the failure
and updating the routing table is the big challenge of this
algorithm, and while this update does not happen, the packets
will be dropped.

Algorithm Control Plane Static Rotor InFaRR
Fast Rerouting No Yes Yes Yes
Place of the Action Control Plane Data Plane Data Plane Data Plane
Setup Method Reactive Preplanned Search Preplanned

Path
Recovery Procedure Global Local Local Segment
Domain Recovery Single Single Multiple Single
Recovery Path Optimized No No Optimized
Pooling process Yes No No No

TABLE II: Summary of the algorithms.

Table II summarizes the main characteristics of the related
works that will be part of the experimentation to compare with
the InFaRR algorithm.

IV. IN-NETWORK FAST REROUTING - INFARR

The fast rerouting functionality starts as soon as the switch
detects that it is not possible to forward packets through the
port indicated by the main routing table. InFaRR proposes a
fast rerouting algorithm for programmable networks capable of
bypassing up to three faults in Fat-Tree networks without using
additional packet headers and without link state monitoring
mechanisms (heartbeats or keep alive messages).

The support for up to three link failures is because the fat-
tree topology has three layers, and only one failure per layer
is supported: from the ToR switch to the aggregation switch,
from the aggregation switch to the core router/switch, and from
the core router/switch back to the aggregation switch. The first
two layers are managed using the backup route. In the core,
Pushback is used. In fact, InFaRR may support more than three
link failures at the same time. The general rule would be to
support up to k/2-1 backup routes per layer (up to k/2-1 link
failures). Such approach will require k/2-1 forwarding tables
in the switch which may consume too much memory. At the
end of the day, supporting up to three failures simultaneously
should be quite enough for the control plane to assume and
deal with rerouting.

InFaRR was implemented in the P4 language and its basic
recovery principle is to query a predefined secondary routing
table to be used in failure situations. Advanced functionalities
complement its operation, such as: 1) Pushback mechanism;
2) Prevention of loops in the network; 3) Recognition and
restoration mechanism; and 4) Return to the main route. It is
worth mentioning that although such functionalities are found
in other similar solutions, they are supported individually, not
being implemented in P4 as a joint mechanism. Putting all the
features together as a single solution is exactly what InFaRR
aims to do.

A. InFaRR taxonomy

The taxonomy of the InFaRR algorithm is important to
understand the terminology used to describe the functionality
presented in the routing and rerouting process. Such taxonomy
is somehow found in similar works, but several other terms
are newly defined in this paper and may be used to further
data plane rerouting solutions.

• Loop Prevention Mechanism: It is the switch’s ability
to prevent packets from being sent on the same port
they arrived. Although its detection is a simple activity
(comparison if the input port is the same as the output
one), it requires that the switch has mechanisms to handle
this situation; InFaRR proposes rerouting or using the
Pushback Mechanism for this purpose. One key aspect
of InFaRR is that there are not backup routes in the core
part of the network. This design choice was done since
we do not want to send traffic to other PoDs, different
from the destination PoD. If we allow having backup
routes in the core, the other PoDs will end up serving
as transit for traffic not being sent to them, causing
a downstream/upstream movement of traffic inside the
datacenter. In summary, in case of link failures in the core

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3283459

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE SAO CARLOS. Downloaded on June 10,2023 at 23:16:34 UTC from IEEE Xplore. Restrictions apply.

6

routers, InFaRR will always make Pushback towards the
aggregation switches.

• Pushback Mechanism: it is ability of the InFaRR al-
gorithm to forward packets to the predecessor switch
in case of failures in the routing and rerouting process.
This forwarding option prevents the packet from being
dropped and forwards it to the predecessor switch which
is an active and known path.
Figure 3 shows the execution of the Pushback Mechanism
on switch S3: unable to forward the packet to switch S4
and, in the absence of a secondary route, the packet is
forwarded to its predecessor, S2.

Fig. 3: Pushback sends the packet to the predecessor switch.

• Predecessor: the predecessor concept differs from the
previous switch concept as it is implemented during the
Pushback Mechanism. Routing consists of a series of
switches through which the packet needs to pass until
it reaches its destination. The term predecessor applies
to switch n − 1 considering n the current switch that
is processing the packet. See an example with n = 4,
as shown in Figure 3. The packet generated in the
source host is forwarded through the network, passing
sequentially through switches S1 → S2 → S3, until it
finds a failure between the links S3-S4; switch S3 (n= 3)
needs to perform the Pushback Mechanism as it does not
have a secondary routing. Thus, the packet is forwarded
to switch S2 (n = 2). Switch S2 has as its predecessor
the switch S1 (n − 1), while switch S3 is the previous
switch that the packet passed through.

• Recognition and Restoration Mechanism: the switch,
when detecting a loop situation, learns that such a path is
not useful for the flow being treated and then proceeds to
the rerouting plan or Pushback. This feature enables the
flow to use an optimized routing table since the packet
does not need to go through unnecessary paths caused by
the loop, and makes the switch a Pivot in the rerouting
process to the flow.

• Pivot: every switch on the network that has a backup
routing table can become a Pivot. The switch that has the
port disabled for the flow by the Recognition and Restora-
tion Mechanism, and has the rerouting port working is
called a Pivot switch. This identification is important
because it will determine the functioning of the Return
to the Main Route mechanism.
Figure 4 shows the operation of Pivot on switch S2.
The packet follows the main routing through switches
S1 → S2 → S3. Since the link between S3-S4 is failed,
switch S3 does a Pushback returning the packet to S2.
The Loop Prevention Mechanism causes switch S2 to
forward packets through switch S5, while the Recognition
and Restoration Mechanism causes the next packets in the
flow to be forwarded along the fault-free route via S5. The
Pivot switch makes it possible to bypass a remote fault

and is where the Return to main route Mechanism will
be implemented.

Fig. 4: Switch Pivot.

• Return to the Main Route Mechanism: this mechanism
allows to return from the backup path to the main route
once it is recovered. The idea behind the mechanism is
essentially to duplicate (clone) a packet and send the
original one to the backup path and the cloned one to the
main route. If the packet sent through the main route does
not return within a certain pre-defined time3, the switch
assumes that the main route is recovered and should
return sending of packets through it. Packet duplication
ensures that one of them is delivered to the destination
via the main or backup paths.

• Primary routing table: it is the first routing table to be
used by the forwarding algorithm. The table is predefined
by the control plane and may have different routing
policies for each type of destination or flow.

• Secondary routing table: also called the backup routing
table, it is used by the recovery mechanism when the
primary routing table was not able to forward the packet.
This table is also predefined by the control plane and
only consists of entries for destinations or flows that
require a recovery mechanism. The usage of a secondary
(backup) routing table recalls the idea of traffic deflection
[27] which is similar to our approach. However, some
works use deflection to deal with persistent congestion
and microbursts. In our case, we divert the flow to a pre-
configured backup route because of a link failure which
is a different use of deflection.

Figure 5 will be used as an example to visualize the terms
and mechanisms that have been described. The topology4

presents the communication between a source host and some
destination hosts: hosts A and B.

The main routing table (highlighted in blue) between the
source host and destination host A has two failures and we will
use them to illustrate the Pushback Mechanism on switches 2,
3 and 6. We will also depict the Loop Prevention Mechanism
on switches 1, 2 and 3, as well as the Recognition and
Restoration Mechanism and the Return to the Main Route
Mechanism on switch 1.

Switches 1 and 2 use the main routing table to forward
packets to host A. Switch 3 detects the failure in link 3-4
and performs rerouting via switch 6. However, there is also a
failure in the link 6-4 and, in this case, InFaRR triggers the
Pushback Mechanism, returning the packet to its predecessor
(switch 3). It is observed that switch 3 does not have viable
forwarding options, as it has a DOWN port and another port

3One TTL is enough to wait for the packet to get back.
4This topology was chosen just for sake of explanation. InFaRR is deeply

evaluated in/for data center topologies.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3283459

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE SAO CARLOS. Downloaded on June 10,2023 at 23:16:34 UTC from IEEE Xplore. Restrictions apply.

7

Fig. 5: Pushback, Loop Prevention, Recognition and Restora-
tion mechanisms.

in loop. In this case, the Pushback Mechanism forwards the
packet to its predecessor (switch 2). Switch 2 also needs to
use the Pushback Mechanism and forward the packet to its
predecessor (switch 1).

Switch 1, upon receiving back the packet forwarded by
switch 2, also detects the loop, thus triggering fast rerouting
via switch 7. At this moment, switch 1 uses the Recognition
and Restoration Mechanism to store the information that the
path through switch 2 is unavailable, that is, the subsequent
packets of this flow must be forwarded via switch 7. After
that, switch 1 eventually starts the Return to the Main Route
Mechanism to check the availability of forwarding packets
via switch 2. In this case, the original packet (forwarded to
switch 7) must be duplicated, having its copy sent to the output
interface that connects it to switch 2. If the failures have not
been corrected in switch 2, the duplicated packet will return
to switch 1 according to the Pushback Mechanism already
described. If the duplicate packet does not return, it is assumed
that the faults have been recovered and this route becomes the
main route for the routing process again.

There is a slight difference between the execution of InFaRR
on switch 1, 2 and 3. On switch 2 and 3, the Recognition
and Restoration Mechanism was not used, since the Pushback
Mechanism sent the packet back to switch 1. Switch 1, on the
other hand, benefited from the Recognition and Restoration
Mechanism as the backup route is operational, becoming a
Pivot in the rerouting process. Therefore, it is observed that
the Recognition and Restoration Mechanism should only be
used when the secondary route is operational, which does not
occur with switch 2 and 3 for this scenario. InFaRR is able to
detect this event by triggering the Recognition and Restoration
Mechanism at different points in the network when necessary.

B. Finite State Machine - FSM

We have designed a simplified FSM for InFaRR which is
shown in Figure 6. We will focus on the following states:
Routing, Recognition and Restoration, Return to the main
route, Rerouting and Pushback. Such states are the main ones
necessary to showcase the features of InFaRR. We will not
discuss the Parser and Deparser states since they are well-
known for P4-based data plane programs. We will also not
discuss the Preparation state since it basically consists in
initializing the counters, registers and variables necessary to
run InFaRR. Finally, the Drop state represents the state of a
dropped packet.

Fig. 6: FSM for the InFaRR algorithm.

1) Routing state: The Routing state is responsible for
performing the basic packet switching function and is present
in all programmable network switches. We evaluated the fea-
sibility of selecting priority flows that would require different
routing policies. We consider the source IP address, destination
IP address and destination TCP ports as the key for the lookup,
used individually or jointly. The implementation of the routing
table with this lookup key structure proved to be viable and
easy to implement. Flows that do not have routes defined in
the routing table are transitioned to the Drop state.

There are five possible transitions to the next state, which
are chosen according to the physical (UP/DOWN) or logical
(loop or blocked) status of the output port:

• Output port with status UP: transition will take place to
Deparser state;

• Output port with status DOWN: the transition will take
place to the Rerouting state;

• Output port not specified: in cases where there was no
match in the routing table, the transition will occur to the
DROP state;

• Output port in loop: in cases where the output port is the
same as the input port, the transition will take place to
the state of Recognition and Restoration Mechanism;

• Outgoing port blocked by the Recognition and Restora-
tion Mechanism: the transition will take place to the
Return to the main route state.

2) Rerouting state: Once the packet is assigned to the
rerouting state, a process similar to that of routing will be
carried out, however with a query to a secondary routing table
(backup). The secondary routing table is defined in advance
and can be adjusted as needed by the control plane.

There are four possible transitions to the next state which
are chosen according to the physical (UP/DOWN) or logical
(loop) status of the output port:

• Output port with status UP: the transition will take place
to the Deparser state;

• Output port with status DOWN: the transition will take
place to the Pushback Mechanism state;

• Output port not specified: in cases where match does not
occur in the secondary routing table, the transition will
occur to the DROP state;

• Output port in loop: in cases where the output port is the
same as the input port, the transition will take place to
the Pushback state.

In the rerouting state, it is not necessary to manage the

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3283459

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE SAO CARLOS. Downloaded on June 10,2023 at 23:16:34 UTC from IEEE Xplore. Restrictions apply.

8

logical state of the port since once it is not possible to
forward to the recommended port, the Pushback will occur
and consequently the Recognition and Restoration Mechanism
of the predecessor switch will prevent packets from this flow
from reaching this switch again.

3) Recognition and Restoration state: The Recognition and
Restoration state is transitioned when the Routing state detects
a loop. In this step, InFaRR will record that the output port is
inactive for this flow. Subsequent packets of this flow will not
be forwarded through this port. The timestamp at which the
status of the flow was changed is also stored for future use by
the Return to the main route mechanism. After completing all
the steps described, the FSM will be transitioned to the Return
to the main route state (arrow not shown in the FSM for sake
of simplicity).

4) Return to the main route state: The Return to the
Main Route Mechanism can be divided into two functions: 1)
periodically send verification packets. This action duplicates
a data packet and sends it to the main route, in addition to
sending the original packet via the backup path; and 2) validate
the return of the cloned packet. If the cloned packet does not
return within the pre-established period, for example one RTT
as explained above, InFaRR assumes that the main route has
been re-established. From this moment on, packets can be sent
via the main route. If the packet returns, it is concluded that
the failure still persists.

There are four possible transitions to the next state which
are chosen according to the physical status (UP/DOWN) of
the output port:

• The time to clone the packet and send it to the main
route has not arrived: the transition will take place to the
Rerouting state;

• The time to clone the packet and send it to the main route
has arrived: the transition will take place to Deparser and
Rerouting state simultaneously;

• The cloned packet does not return within one TTL: the
main route is recovered and the transition will take place
to the Deparser state;

• The cloned packet returns: the main route is still failed,
then transition to Drop state.

5) Pushback state: The Pushback Mechanism is transi-
tioned when the Rerouting state cannot forward packets be-
cause of the DOWN status or port in loop. Faced with this
condition, the switch will send the packet to the predecessor
switch through the mapped port in the Preparation state.
After all the described steps are completed, the FSM will be
transitioned to the Deparser state.

V. EVALUATION

The proposed algorithm, as described in Section IV, was
implemented using the P4 language. For the evaluation, a
BMv25 Mininet environment was created. The source code
of InFaRR can be found in the public repository6.

The experiment was performed using standard Fat-Tree and
AB Fat-Tree topologies with k=4. In order to evaluate the

5https://github.com/p4lang/behavioral-model.
6https://github.com/dcomp-leris/InFaRR.

network recovery mechanism in different failure scenarios
between hosts of different PoDs, flows with different packet
sizes were created to measure the impact of packet losses
versus the packet size. Different sizes of payloads in the IP
layer were evaluated7: 64, 300, 500 , 1000 and 1500 bytes.
Each execution was performed independently for InFaRR as
well as each of the three algorithms mentioned in Section
III-B. As described, the InFaRR algorithm has the ability to
recover up to three failures simultaneously, so all algorithms
were subjected to the following scenarios:

1) Fail-free scenario: to create a baseline and validate the
connectivity between the network elements, a test was
carried out in a environment without failures;

2) Scenario with 1 failure8: a failure was simulated in the
main link at the destination PoD;

3) Scenario with 2 failures: a failure was simulated in
the main link and another in the secondary link at the
destination PoD;

4) Scenario with 3 failures: failures were simulated in three
sequential links in the routing process (main, secondary
and tertiary) at the destination PoD.

Figure 7 represents the experimentation scenario used to
evaluate this work. Each test consists of starting the virtual en-
vironment that simulates the (AB) Fat-Tree network with k=4
in Mininet (step 1), and loading the respective P4 algorithm on
the switches referring to the test to be evaluated (step 2). Once
the environment is ready, the IPDT calculation tool is started
on the source and destination hosts (step 3). The information
for each packet is stored in a log file for further analysis. The
test ends with the deactivation of the virtual environment and
cleaning the variables (step 4). The data collected in all tests
and scenarios were analyzed using R Studio.

Fig. 7: Setup for the evaluation.

The topology used is shown in Fig. 8 with k=4. As an
example, the topology demonstrates that host H1P1 will send
traffic to other six hosts, as shown in blue lines. Thus,
following this same concept, all selected hosts are taken as
source and will connect to hosts in other PoDs.

Tests with hosts of the same PoD were not considered
since failures in such a scenario may be solved using intra-
PoD solutions. For optimization of the experimentation, we
considered only one host of each ToR switch, since all hosts
connected to the same ToR have the same routing table. Thus,
in a k=4 topology, two hosts were chosen from each PoD,

7Refers to the size of the “IP.len” field.
8The failures always occur between the Core and Aggregation equipment

of the destination PoD.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3283459

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE SAO CARLOS. Downloaded on June 10,2023 at 23:16:34 UTC from IEEE Xplore. Restrictions apply.

9

each one connected to a different ToR, totalizing eight hosts.
Each host will make a connection to six other neighbors hosts
of other PoDs, totalizing 48 tests per round (8 source hosts x
6 destination hosts).

Fig. 8: Setup for the evaluation.

Each test was structured to collect logs in the different
existing stages, as shown in Fig. 2. To carry out the tests,
we arbitrarily chose to send 750 packets between a source
host and a destination host. Such number of packets is just
an example for our evaluations so that we could trigger the
failure events. Any other flow sizes may be used constrained
to the time for collecting the results.

In the initial stage of each T0, 249 packets are sent through
the main path to the destination. This first batch generates
information about the normal working state of the network.
Failures occur on the 250th packet (step T1); when we
simulate that the ports are DOWN, the 250th packet is unable
to be routed through the port suggested by the main routing
table, so the recovery algorithm is immediately triggered (step
T2). Monitoring the 250th packet is an important metric for
us to discern whether the algorithm was able to bypass the
failures without losing packets. During step T3, the rerouting
algorithm has already managed to bypass the failure and
packets are forwarded through the secondary path (backup);
at this stage, packet losses are no longer expected and it is
possible to assess how much the network has been degraded
by the use of the secondary path, either by increasing the
number of hops or by increasing the IP Packet Transfer Delay
(IPTD) or IP Delay Variation (IPDV). Failure recovery takes
place during the 500th packet, featuring step T4. In step T5,
we evaluate the algorithm’s ability to return to the main path;
subsequent packets travel normally along the main path and
belong to step T6. The experimentation process ends after the
750th packet.

From the analysis of the results, it was possible to obtain the
following measurements: 1) packet loss during the recovery
process; 2) IPTD; 3) number of hops (TTL) during the differ-
ent stages; and 4) IPDV. Packet loss was obtained through the
difference between the number of packets sent and received.
The IPDT was computed through the difference between the
timestamp at which a packet enters the network, and the time
timestamp when the packet leaves the network. The number
of hops was measured from the Time to Live (TTL) field of
the IPv4 header. The IPDV is calculated by the differences
between the average of IPTD: the phase in which the packets
are forwarded without failure and the phase in which the
packets need to bypass failures. Without compromising the

comprehension, and since IPDV is calculated from IPDT,
IPDV is not shown in this evaluation due to lack of space.

After performing the initial tests where we measured the
TTL in our topology, we defined the waiting interval for the
return of the cloned packet to 1 second. This value must be
at least equivalent to the RTT of the packet up to the failed
switch9. There is no background traffic in the network.

The centralized Control Plane, described in Section III-B3,
was implemented in Python and works on a server segregated
from the switches, performing periodic pooling on each of the
P4 switches. The objective of this algorithm is to detect the
occurrence of failures in the network, recalculate the routes
and update the routing tables in the switches. In this case,
it was observed that the average time to execute queries on
all switches in our experimental environment, sequentially,
varied between 3 and 5 seconds. Therefore, for the purposes
of standardization and data collection, we added a delay to the
algorithm, so that queries have a fixed interval of 5 seconds.

The interval for testing the return to the main route and
clone the packet was defined as half (2.5 secs) of the Control
Plane monitoring interval time, in order to provide a significant
reduction in recovery time through the Return to the main
route mechanism.

A. Fat-Tree results

Table III shows a summary of the results obtained for the
number of hops needed during the steps for the recovery
process for 1, 2 and 3 failures. T0 shows the step without
failures. It is observed that all the algorithms (Static, Rotor
and InFaRR) were able to use a backup path in the scenario
with only 1 failure. During the recovery step (T2), all the
algorithms needed 7 hops to circumvent the point of failure.
However, InFaRR converges to 5 hops after the recovery when
using the backup path (instant T3), while the Static and Rotor
algorithms still need 7. In instant T6 (not shown in the table),
all algorithms return to 5 hops, which is expected. The Control
Plane algorithm is not able to forward packets until a Control
Plane update is sent to the data plane. In this case, as indicated,
there is packet loss regardless of the number of failures.

As can be seen in Tab. III, the algorithms Static and Rotor
were not able to deal with multiple failures resulting in loss
of packets. InFaRR, on the other hand, could manage the
simultaneous failures needing 11 and 13 hops during the
recovery step (T2), respectively for 2 and 3 failures, returning
to 5 hops when using the backup path (T3). Note that for the
Static and Rotor algorithms, the only solution for recovering
from multiple failures is dependent on the control plane which
will take seconds for rerouting, causing several damages to
applications.

For sake of clarification, we will show in Fig. 9 why the
algorithms Static and Rotor are not able to deal with more than
one failure. Figure 9 shows a scenario where H1P1 wants to
send traffic to H1P2 and needs to deal with two failures, one
between link S1CORE and A1P2 and another one between

9The monitoring of the RTT is not the scope of the InFaRR algorithm.
However, there are currently available P4 implementations for RTT monitoring
[28].

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3283459

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE SAO CARLOS. Downloaded on June 10,2023 at 23:16:34 UTC from IEEE Xplore. Restrictions apply.

10

Algorithms/ Control Static Rotor InFaRR
N.º of failures Plane
1 failure
N.º of hops 5 5 5 5
Normal path (T0)
N.º of hops Loss 7 7 7
Recovery process (T2) of Packet
N.º of hops 5 7 7 5
Secondary path (T3)
Meet ITU requirements? No Yes Yes Yes

2 failures
N.º of hops 5 5 5 5
Normal path (T0)
N.º of hops Loss No recovery No recovery 11
Recovery process (T2) of Packets
N.º of hops 5 No recovery No recovery 5
Secondary path (T3)
Meet ITU requirements? No No No Yes

3 failures
N.º of hops 5 5 5 5
Normal path (T0)
N.º of hops Loss No recovery No recovery 13
Recovery process (T2) of Packets
N.º of hops 5 No recovery No recovery 5
Secondary path (T3)
Meet ITU requirements? No No No Yes

TABLE III: Summary of evaluation: Standard Fat-Tree.

A1P2 and S2CORE. Following the sequence of alternative
links available for circumventing the failures, both algorithms
will use the link between S1CORE and A1P3 (step 1). A1P3
then uses the link to S2CORE (step 2) which in turn has only
the link from S2CORE to A1P4 available (step 3). A1P4 will
then send the packet back to S1CORE creating a loop in that
equipment. Unfortunately, such situation is quite common in
Fat-Tree topologies making the Static and Rotor algorithms
not appropriate to deal with more than one failure at the same
time.

Fig. 9: Occurrence of looping not managed by Static and Rotor
algorithms.

Fig. 10 shows the same scenario as above, however now
with InFaRR in action. The Pushback Mechanism used on the
Core switches prevents the loop from occurring and enables
recovery. The S1CORE switch performs Pushback (step 1) to
A1P1 due to the failure of the link that connects it to PoD2
(A1P2); A1P1 will send the packet to S2CORE, which is
also unable to send the packet directly to PoD2 and, again,
a Pushback is performed (step 2); the A1P1 switch, given the
infeasibility of the main and secondary routing table, sends
the packet to its predecessor (step 3). Rerouting from the
T1P1 switch takes the packet along a viable path to H1P2,
passing through A2P1, S3CORE, A2P2, and T1P2 switches
(highlighted in purple). Note that InFaRR does not use other
PoDs to circumvent the failure avoiding longer paths in the

topology, thus minimizing the usage of network resources.
Clearly, if a third failure happens between the link from

S3CORE to A2P2, no alternative paths are available at all and
no recovery is possible. Any other combination of failures is
possible to be managed by InFaRR.

Fig. 10: InFaRR: Pushback mechanism in action to avoid
loops.

Figure 11 presents the IPTD time during step T2, specifi-
cally for the InFaRR algorithm in different failure scenarios.
Step T2 consists of looking for an alternative path to the
destination and, thanks to the Recognition and Restoration
Mechanism, there is an increase in the number of hops and
IPDT only in this step. It is important to highlight that, in
InFaRR, step T2 is executed only to one packet, and during
step T3 (using the backup path), the other packets will have
the same number of hops and IPDT equivalent to the initial
step T0.

Fig. 11: IPDT time during step T2.

The process to return to the main route associated with
step T5 happens immediately after the port returns to the UP
state for the Static and Rotor algorithms, as these algorithms
act locally on the switches where the fault existed. The
InFaRR and Control Plane algorithms promote fault bypass
by optimizing the routing table so that packets do not need
to go to the faulty switch. InFaRR uses Pushback, Loop
Prevention, and Recognition and Restoration mechanisms to
provide this optimization while the Control Plane recalculates
routes and sends updates to the switches’ routing tables. The
InFaRR algorithm uses the Return to Main Route Mechanism
to anticipate the use of the main routing table before the
recalculation of routes by the Control Plane. The Return to
Main Route Mechanism, as it sends packets (cloned packets)
at predefined time intervals, does not guarantee return to the
main route immediately like the Static and Rotor algorithms.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3283459

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE SAO CARLOS. Downloaded on June 10,2023 at 23:16:34 UTC from IEEE Xplore. Restrictions apply.

11

B. AB Fat-Tree results

This evaluation presents the results obtained with the AB
Fat-Tree topology, which is characterized by the relocation of
the connection of some links between the core switches and
the aggregation switches.

With the AB Fat-Tree topology, the Rotor algorithm was
able to recover from two and three failures, while the Static
algorithm is yet not capable of dealing with more than one
failure. Figure 12 represents the recovery through the Rotor
algorithm in the face of three consecutive failures, in which
there was an increase of 120%, from 5 hops to 11 hops to
bypass the failures. The line highlighted in purple shows the
necessary hops during the recovery process so that the Rotor
algorithm can work around the failures.

Fig. 12: Rotor algorithm circumventing three failures.

The rearrangement of the links in the AB Fat-Tree enabled
the Rotor algorithm to recover in scenarios where it was
previously not possible using the Standard Fat-tree topology.
Although the Rotor algorithm was able to manage the failures,
the number of hops obtained during the recovery process
(step T2) remained equal to step T3 in which the flow to
bypass failures uses secondary path. Thus, the Rotor algorithm
requires longer paths and extra hops using other PoDs to
circumvent the failures. Table IV shows the summary of the
results for the AB Fat-Tree. As can be seen, for both T2 and
T3, the number of hops are the same: going from 5 to 7 in
the scenario with 1 failure, to 9 hops in the scenario with 2
failures and reaches 11 hops in the scenario with 3 failures.

The InFaRR algorithm obtained the same results as with
the Standard Fat-Tree topology; thus, the rearrangement of the
links between the equipments to support AB Fat-Tree is not
necessary for the perfect functioning of InFaRR, thus reducing
extra costs for the data center.

VI. LESSONS LEARNED AND LIMITATIONS

The InFaRR algorithm is designed to exploit up to 3
simultaneous failures in Fat-Tree networks with k=4. The
growth of k does not enable greater capacity for simultaneous
fault tolerance in InFaRR, since in this case the limit for the
Pushback Mechanism is the number of layers. An alternative
to increase resilience and use more links between PoDs would
be the inclusion of a tertiary routing table.

Compared to the algorithms adapted from the literature
(Control Plane, Static and Rotor), InFaRR obtained a better
result because it recovered correctly in all failure scenarios
evaluated. The existing programmability in the data plane
enabled the coding of InFaRR allowing the detection of the
loop and the optimization of the recovery domain, not making

Algorithms/ Control Static Rotor InFaRR
N.º of failures Plane
1 failure
N.º of hops 5 5 5 5
Normal path (T0)
N.º of hops Loss 7 7 7
Recovery process (T2) of Packet
N.º of hops 5 7 7 5
Secondary path (T3)
Meet ITU requirements? No Yes Yes Yes

2 failures
N.º of hops 5 5 5 5
Normal path (T0)
N.º of hops Loss No recovery 9 11
Recovery process (T2) of Packets
N.º of hops 5 No recovery 9 5
Secondary path (T3)
Meet ITU requirements? No No Yes Yes

3 failures
N.º of hops 5 5 5 5
Normal path (T0)
N.º of hops Loss No recovery 11 13
Recovery process (T2) of Packets
N.º of hops 5 No recovery 11 5
Secondary path (T3)
Meet ITU requirements? No No Yes Yes

TABLE IV: Summary of evaluation: AB Fat-Tree.

it necessary to route the traffic through an external PoD. This
feature made it possible to optimize the number of hops during
step T3 - secondary path.

The addition of links to the AB Fat-tree topology actually
promotes greater network resilience. The Rotor algorithm,
which was unable to recover in scenarios with two and
three failures in the Standand Fat-Tree topology, was able to
bypass the failures in the AB Fat-Tree topology. The InFaRR
algorithm showed no distinction between the topologies, and
delivered a forwarding plan that was always optimized thanks
to the Pushback and Recognition and Restoration mechanisms.

The use of programmable network cards is a current trend
in datacenter networks and can enable the use of the InFaRR
algorithm at the end-host [29]. A host with a programmable
card with two or more interfaces could use the rerouting
features and enable new protection paths for priority flows,
extending the routing capability to the host [30].

Currently, InFaRR supports only link failures and future
works need to be done to adapt the solution to deal with
switch failures as well. The structures allocated inside the P4
switch to each flow needs 288 bits (36 bytes). Thus, 1.47
Mbytes of memory were allocated for the treatment of 40960
different flows. The scalability of the number of flows handled
is directly associated with the available memory capacity.
In this implementation, we did not perform any process of
optimization, grouping and selection of which flows would be
protected by the InFaRR algorithm, either through the hosts
involved (IP addresses), type of service (TCP ports) or any
other QoS classification mechanism.

VII. CONCLUSION

InFaRR is a fast rerouting algorithm for programmable
networks, developed in the P4 language, free of additional
management headers and heartbeats. The basis of its operation
explores the characteristic of the P4 language match-action
on a main table and a secondary table, which can be built

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3283459

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE SAO CARLOS. Downloaded on June 10,2023 at 23:16:34 UTC from IEEE Xplore. Restrictions apply.

12

with personalized search keys. The InFaRR algorithm has
four essential features not found, together, in other recovery
mechanisms: Loop Prevention, Pushback, Recognition and
Restoration, and Return to the Main Route.

The InFaRR algorithm obtained excellent results, high-
lighting the success of the recovery process in all evaluated
scenarios with the absence of packet loss after the link failure
(step T2). The experiments were done with one, two and three
simultaneous failures on Standard Fat-Tree and AB Fat-Tree
topologies.

Given the results obtained, it is understood that the InFaRR
algorithm would increase its recovery capacity in hierarchical
structures with more layers, since it becomes possible to
explore more adjacencies during the execution of routing,
rerouting and Pushback Mechanism. The Return to the Main
Route Mechanism executed in the data plane makes it possible
to recover the routing in the face of remote failures before the
intervention of the control plane.

ACKNOWLEDGMENTS

This work was funded by the São Paulo Research Founda-
tion (FAPESP) under grant number 2021/14297-1 and in part
by the Coordenação de Aperfeiçoamento de Pessoal de Nı́vel
Superior - Brasil (CAPES) - Finance Code 001”.

REFERENCES

[1] L. Kiranmai, M. Research Scholar, A. Professor, D. Kumar, IP Fast
Rerouting framework with Backup Topology, International Journal of
Computer Engineering In Research Trends 1 (2) (2014) 96–103.

[2] A. Sgambelluri, A. Giorgetti, F. Cugini, F. Paolucci, P. Castoldi,
OpenFlow-based segment protection in Ethernet networks, Journal of
Optical Communications and Networking 5 (9) (2013) 1066–1075.

[3] J. Ali, G. M. Lee, B. H. Roh, D. K. Ryu, G. Park, Software-defined
networking approaches for link failure recovery: A survey, Sustainability
(Switzerland) 12 (10) (2020).

[4] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, D. Walker, P4: Pro-
gramming protocol-independent packet processors, SIGCOMM Comput.
Commun. Rev. 44 (3) (2014) 87–95.

[5] A. Kamisinski, Evolution of IP fast-reroute strategies, in: Proceedings
of 2018 10th International Workshop on Resilient Networks Design and
Modeling, RNDM 2018, 2018, pp. 1–6.

[6] K. Subramanian, A. Abhashkumar, L. D’Antoni, A. Akella, D2r: Policy-
compliant fast reroute, in: Proceedings of the ACM SIGCOMM Sympo-
sium on SDN Research (SOSR), SOSR ’21, Association for Computing
Machinery, New York, NY, USA, 2021, p. 148–161.

[7] J. Liu, A. Panda, A. Singla, B. Godfrey, M. Schapira, S. Shenker,
Ensuring connectivity via data plane mechanisms, in: 10th USENIX
Symposium on Networked Systems Design and Implementation, 2013,
p. 113.

[8] M. Chiesa, R. Sedar, G. Antichi, M. Borokhovich, A. Kamisiński,
G. Nikolaidis, S. Schmid, Purr: A primitive for reconfigurable fast
reroute: Hope for the best and program for the worst, in: Proceedings
of the 15th International Conference on Emerging Networking Exper-
iments And Technologies, CoNEXT ’19, Association for Computing
Machinery, New York, NY, USA, 2019, p. 1–14.

[9] R. Sedar, M. Borokhovich, M. Chiesa, G. Antichi, S. Schmid, Supporting
emerging applications with low-latency failover in P4, NEAT 2018
- Proceedings of the 2018 Workshop on Networking for Emerging
Applications and Technologies, Part of SIGCOMM 2018 (2018) 52–57.

[10] G. Luz, A. Rocha, L. Almeida, F. Verdi, InFaRR: Um algoritmo para
reroteamento rápido em planos de dados programáveis, in: Anais do XL
Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuı́dos,
SBC, 2022, pp. 154–167.

[11] R. Chodorek, Qos measurement and evaluation of telecommunications
quality of service [book review], Communications Magazine, IEEE 40
(2002) 30–32.

[12] ITU-T, Recommendation Y.1541: network performance objectives for
IP-based services, ITU-T (2002) 7–9.

[13] R. Stankiewicz, P. Cholda, A. Jajszczyk, QoX: What is it re-
ally?, IEEE Communications Magazine 49 (4) (2011) 148–158.
doi:10.1109/MCOM.2011.5741159.

[14] M. Chiesa, A. Kamisiński, J. Rak, G. Retvari, S. Schmid, Fast Recovery
Mechanisms in the Data Plane, Ieee Cmst (2020) 1–46.

[15] S. Sharma, D. Staessens, D. Colle, M. Pickavet, P. Demeester, Open-
Flow: Meeting carrier-grade recovery requirements, Computer Commu-
nications 36 (6) (2013) 656–665.

[16] P. Cholda, A. Mykkeltveit, B. E. Helvik, O. J. Wittner, A. Jajszczyk,
A survey of resilience differentiation frameworks in communication
networks, IEEE Communications Surveys and Tutorials 9 (4) (2007)
32–55.

[17] J. Rak, Resilient Routing in Communication Networks (Springer,
11.2015), Springer Publishing Company, Incorporated, 2015.

[18] V. Liu, D. Halperin, A. Krishnamurthy, T. Anderson, F10: A fault-
tolerant engineered network, in: Proceedings of the 10th USENIX
Conference on Networked Systems Design and Implementation, nsdi’13,
USENIX Association, USA, 2013, p. 399–412.

[19] S. Lindner, D. Merling, M. Häberle, M. Menth, P4-Protect: 1+1 Path
Protection for P4, EuroP4 2020 - Proceedings of the 3rd P4 Workshop
in Europe, Part of CoNEXT 2020 (2020) 21–27arXiv:2001.11370.

[20] V. Krishna, N. Suri, A. Gopalasamy, A comparative survey of algorithms
for frequent subgraph discovery, Current science 100 (2011) 190.

[21] M. Borokhovich, L. Schiff, S. Schmid, Provable data plane connec-
tivity with local fast failover: Introducing OpenFlow graph algorithms,
HotSDN 2014 - Proceedings of the ACM SIGCOMM 2014 Workshop
on Hot Topics in Software Defined Networking (2014) 121–126.

[22] D. Merling, S. Lindner, M. Menth, Robust lfa protection for software-
defined networks (rolps), IEEE Transactions on Network and Service
Management 18 (3) (2021) 2570–2586.

[23] J. Xu, S. Xie, J. Zhao, P4Neighbor: Efficient Link Failure Recovery with
Programmable Switches, IEEE Transactions on Network and Service
Management 18 (1) (2021) 388–401.

[24] Z. Li, Y. Hu, J. Wu, J. Lu, P4Resilience: Scalable Resilience for Multi-
failure Recovery in SDN with Programmable Data Plane, Computer
Networks 208 (March) (2022) 108896.

[25] I. Nikolaevskiy, Scalability and Resiliency of Static Routing, Doctoral
thesis, School of Science (2016).
URL http://urn.fi/URN:ISBN:978-952-60-7194-7

[26] C. E. Leiserson, Fat-Trees: Universal Networks for Hardware-Efficient
Supercomputing, IEEE Transactions on Computers C-34 (10) (1985)
892–901.

[27] S. Abdous, E. Sharafzadeh, S. Ghorbani, Burst-tolerant datacenter net-
works with vertigo, in: Proceedings of the 17th International Conference
on Emerging Networking EXperiments and Technologies, CoNEXT ’21,
Association for Computing Machinery, New York, NY, USA, 2021, p.
1–15.

[28] S. Sengupta, H. Kim, J. Rexford, Continuous in-network round-trip time
monitoring, in: Proceedings of the ACM SIGCOMM 2022 Conference,
SIGCOMM ’22, Association for Computing Machinery, New York, NY,
USA, 2022, p. 473–485.

[29] Y. Yan, A. F. Beldachi, R. Nejabati, D. Simeonidou, P4-enabled smart
nic: Enabling sliceable and service-driven optical data centres, Journal
of Lightwave Technology 38 (9) (2020) 2688–2694.

[30] Y. Shan, W. Lin, Z. Guo, Y. Zhang, Towards a fully disaggregated
and programmable data center, in: Proceedings of the 13th ACM
SIGOPS Asia-Pacific Workshop on Systems, APSys ’22, Association
for Computing Machinery, New York, NY, USA, 2022, p. 18–28.

Fábio L. Verdi is an Associate Professor in the Computer Science Department
of the Federal University of São Carlos (UFSCar) Sorocaba campus. He
has been working with data centers, cloud computing, SDN, and dataplane
programmability, leading several national and international projects.

Gustavo V. Luz has a Master degree in Computer Science from Federal
University of São Carlos (UFSCar) and since 2002 works at Claro Telecom
Operator as Solutions Architect.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2023.3283459

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE SAO CARLOS. Downloaded on June 10,2023 at 23:16:34 UTC from IEEE Xplore. Restrictions apply.

